246
Views
16
CrossRef citations to date
0
Altmetric
Articles

The effect of multi-walled carbon nanotubes/hydroxyapatite nanocomposites on biocompatibility

ORCID Icon, , , , &
Pages 53-65 | Received 05 Jun 2017, Accepted 24 Aug 2017, Published online: 12 Sep 2017

References

  • Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthopaedics Related Res. 1981;157:259–278.
  • Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–1510.10.1111/jace.1991.74.issue-7
  • Bonfield W. Composites for bone replacement. J Biomed Eng. 1988;10:522–526.10.1016/0141-5425(88)90110-0
  • Fu L, Khor KA, Lim JP. Effects of yttria-stabilized zirconia on plasma-sprayed hydroxyapatite/yttria-stabilized zirconia composite coatings. J Am Ceram Soc. 2002;85:800–806.
  • Evis Z, Doremus RH. Coatings of hydroxyapatite – nanosize alpha alumina composites on Ti-6Al-4 V. Mater Lett. 2005;59:3824–3827.10.1016/j.matlet.2005.07.020
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.10.1038/354056a0
  • Peigney A. Composite materials: tougher ceramics with nanotubes. Nat Mater. 2003;2:15–16.10.1038/nmat794
  • Dresselhaus M, Dai H. Carbon nanotubes: continued innovations and challenges. MRS Bull. 2004;29:237–243.10.1557/mrs2004.74
  • Treacy MJ, Ebbesen T, Gibson J. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996;381:678–680.10.1038/381678a0
  • Salvetat J-P, Bonard J-M, Thomson N, et al. Mechanical properties of carbon nanotubes. Appl Phys A. 1999;69:255–260.10.1007/s003390050999
  • Curtin WA, Sheldon BW. CNT-reinforced ceramics and metals. Mater Today. 2004;7:44–49.10.1016/S1369-7021(04)00508-5
  • Zhan G-D, Kuntz JD, Wan J, et al. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater. 2003;2:38–42.10.1038/nmat793
  • Chłopek J, Czajkowska B, Szaraniec B, et al. In vitro studies of carbon nanotubes biocompatibility. Carbon. 2006;44:1106–1111.
  • Zanello LP, Zhao B, Hu H, et al. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006;6:562–567.10.1021/nl051861e
  • Balani K, Anderson R, Laha T, et al. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomater. 2007;28:618–624.10.1016/j.biomaterials.2006.09.013
  • Kaya C, Singh I, Boccaccini AR. Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6Al4V medical implants by electrophoretic deposition (EPD). Adv Eng Mater. 2008;10:131–138.10.1002/(ISSN)1527-2648
  • Hooshmand T, Abrishamchian A, Najafi F, et al. Development of sol-gel-derived multi-wall carbon nanotube/hydroxyapatite nanocomposite powders for bone substitution. J Compos Mater. 2013;48:483–489.
  • White AA, Best SM, Kinloch IA. Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. Int J Appl Ceramic Technol. 2007;4:1–13.10.1111/ijac.2007.4.issue-1
  • Shin US, Yoon I-K, Lee G-S, et al. Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements. J Tissue Eng. 2011;2011:674287.
  • Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomater. 2007;28:344–353.10.1016/j.biomaterials.2006.07.044
  • George J, Shaffer M, Stevens M. Investigating the cellular response to nanofibrous materials by use of a multi-walled carbon nanotube model. J Exp Nanosci. 2006;1:1–12.10.1080/17458080500463149
  • Liao S, Xu G, Wang W, et al. Self-assembly of nano-hydroxyapatite on multi-walled carbon nanotubes. Acta Biomater. 2007;3:669–675.10.1016/j.actbio.2007.03.007
  • Zhao L, Gao L. Novel in situ synthesis of MWNTs-hydroxyapatite composites. Carbon. 2004;42:423–426.10.1016/j.carbon.2003.10.024
  • Chen Y, Gan C, Zhang T, et al. Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings. Appl Phys Lett. 2005;86:251905.10.1063/1.1951054
  • Balani K, Chen Y, Harimkar SP, et al. Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomater. 2007;3:944–951.10.1016/j.actbio.2007.06.001
  • Aryal S, Bahadur KR, Dharmaraj N, et al. Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nano-matrix. Scripta Mater. 2006;54:131–135.10.1016/j.scriptamat.2005.09.050
  • Mo CB, Cha SI, Kim KT, et al. Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol–gel process. Mater Sci Eng: A. 2005;395:124–128.10.1016/j.msea.2004.12.031
  • Choi AH, Ben-Nissan B. Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. Nanomedicine. 2007;2:51–61.10.2217/17435889.2.1.51
  • Najafi H, Nemati A, Sadeghian Z. Crystallisation kinetics of hydroxyapatite thin films prepared by sol–gel process. Adv Appl Ceram. 2010;109:313–317.10.1179/174367609X422144
  • Najafi H, Nemati Z, Sadeghian Z. Inclusion of carbon nanotubes in a hydroxyapatite sol–gel matrix. Ceram Int. 2009;35:2987–2991.10.1016/j.ceramint.2009.03.017
  • Bai Y, Neupane MP, Park IS, et al. Electrophoretic deposition of carbon nanotubes–hydroxyapatite nanocomposites on titanium substrate. Mater Sci Eng: C. 2010;30:1043–1049.10.1016/j.msec.2010.05.007
  • Dresselhaus MS, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes. Phys Rep. 2005;409:47–99.10.1016/j.physrep.2004.10.006
  • Das A, Chakraborty B, Sood A. Raman spectroscopy of graphene on different substrates and influence of defects. Bull Mater Sci. 2008;31:579–584.10.1007/s12034-008-0090-5
  • Liu J, Glasmacher U, Lang M, et al. Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure. Appl Phys A: Mater Sci Process. 2008;91:17–22.10.1007/s00339-008-4402-9
  • Crane NJ, Popescu V, Morris MD, et al. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone. 2006;39:434–442.10.1016/j.bone.2006.02.059
  • Kazanci M, Fratzl P, Klaushofer K, et al. Complementary information on in vitro conversion of amorphous (Precursor) calcium phosphate to hydroxyapatite from raman microspectroscopy and wide-angle x-ray scattering. Calcified Tissue Int. 2006;79:354–359.10.1007/s00223-006-0011-9
  • Price RL, Waid MC, Haberstroh KM, et al. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials. 2003;24:1877–1887.10.1016/S0142-9612(02)00609-9
  • Pei X, Zeng Y, He R, et al. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition. Appl Surface Sci. 2014;295:71–80.10.1016/j.apsusc.2014.01.009
  • Jacobson MD. Reactive oxygen species and programmed cell death. Trends Biochem Sci. 1996;21:83–86.10.1016/S0968-0004(96)20008-8
  • Kim Y-K, Jang Y-S, Lee Y-H, et al. Effect of Ca–P compound formed by hydrothermal treatment on biodegradation and biocompatibility of Mg–3Al–1Zn-1.5 Ca alloy; in vitro and in vivo evaluation. Sci Rep. 2017;7:712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.