356
Views
1
CrossRef citations to date
0
Altmetric
Articles

Optimisation of hybridisation effect in graphene reinforced polymer nanocomposites

ORCID Icon, , &
Pages 349-365 | Received 01 Feb 2017, Accepted 05 Jul 2017, Published online: 09 Oct 2017

References

  • Mohan VB, Jayaraman K, Stamm M, et al. Physical and chemical mechanisms affecting electrical conductivity in reduced graphene oxide films. Thin Solid Films. 2016;616:172–182.10.1016/j.tsf.2016.08.007
  • Mohan VB, Liu D, Jayaraman K, et al. Improvements in electronic structure and properties of graphene derivatives. Adv Mater Lett. 2016;7:421–429.10.5185/amlett
  • Mohan VB, Jayaraman K, Bhattacharyya D. Relevance of Adhesion in particulate/fibre-polymer composites and particle coated fibre yarns: a critical review. Rev Adhes Adhes. 2016;4:119–151.10.7569/RAA.2016.097308
  • Zhou X, Wan L-J, Guo Y-G. Binding SnO2 Nanocrystals in Nitrogen-doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries. Adv Mater. 2013;25:2152–2157.10.1002/adma.201300071
  • Kumar S, Ojha AK, Patrice D, et al. One-step in situ synthesis of CeO2 nanoparticles grown on reduced graphene oxide as an excellent fluorescent and photocatalyst material under sunlight irradiation. Phys Chem Chem Phys. 2016;18:11157–11167.10.1039/C5CP04457 J
  • Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–3924.10.1002/adma.201001068
  • Ajayan P, Schadler L, Braun P, et al. Library-nanocomposite science and technology. MRS Bull-Mater Res Soc. 2004;29:975.
  • Huang X, Yin Z, Wu S, et al. Graphene-based materials: synthesis, characterization, properties, and applications. Small. 2011;7:1876–1902.10.1002/smll.201002009
  • Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev. 2012;41:666–686.10.1039/C1CS15078B
  • Potts JR, Dreyer DR, Bielawski CW, et al. Graphene-based polymer nanocomposites. Polymer. 2011;52:5–25.10.1016/j.polymer.2010.11.042
  • Liu Z. Graphene: energy storage and conversion applications. Boca Raton (FL): CRC Press; 2015.
  • Choi W, Lee J-W. Graphene: synthesis and applications. Boca Raton (FL): CRC Press; 2012.
  • Pinnavaia T, Beall G. Polymer-clay nanocomposites. New York, NY: John Wiley & Sons; 2000.
  • An X, Ma H, Liu B, et al. Graphene oxide reinforced polylactic acid/polyurethane antibacterial composites. J Nanomater. 2013;2013:18.
  • Zhang H-B, Zheng W-G, Yan Q, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer. 2010;51:1191–1196.10.1016/j.polymer.2010.01.027
  • Mohan VB, Jayaraman K, Bhattacharyya D. Hybridisation of graphene reinforced two polymer nanocomposites. Int J Smart Nano Mater. 2016;7:179–201.10.1080/19475411.2016.1237389
  • Sellam C. Graphene based nanocomposites for mechanical reinforcement. London: Queen Mary University; 2015.
  • Zhao X, Zhang Q, Chen D, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules. 2010;43:2357–2363.10.1021/ma902862u
  • Stankovich S, Dikin DA, Dommett GH, et al. Graphene-based composite materials. Nature. 2006;442:282–286.10.1038/nature04969
  • Singh V, Joung D, Zhai L, et al. Graphene based materials: past, present and future. Prog Mater Sci. 2011;56:1178–1271.10.1016/j.pmatsci.2011.03.003
  • Salavagione HJ, Ellis G, Martínez G. Graphene-based polymer nanocomposites: Intech Open Access; 2011.
  • Sadasivuni KK, Ponnamma D, Kim J, et al. Graphene-based polymer nanocomposites in electronics. Switzerland: Springer; 2015.
  • Das TK, Prusty S. Graphene-based polymer composites and their applications. Polymer-Plastics Technol Eng. 2013;52:319–331.10.1080/03602559.2012.751410
  • Pasanen P, Voutilainen M, Helle M, et al. Graphene for future electronics. Phys Scrip. 2012;T146:014025.10.1088/0031-8949/2012/T146/014025
  • Kuilla T, Bhadra S, Yao D, et al. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35:1350–1375.10.1016/j.progpolymsci.2010.07.005
  • Artiles MS, Rout CS, Fisher TS. Graphene-based hybrid materials and devices for biosensing. Adv Drug Delivery Rev. 2011;63:1352–1360.10.1016/j.addr.2011.07.005
  • Mohan VB, Brown R, Jayaraman K, et al. Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater Sci Eng: B. 2015;193:49–60.10.1016/j.mseb.2014.11.002
  • Young RJ, Kinloch IA, Gong L, et al. The mechanics of graphene nanocomposites: a review. Compos Sci Technol. 2012;72:1459–1476.10.1016/j.compscitech.2012.05.005
  • Tang H, Ehlert GJ, Lin Y, et al. Highly efficient synthesis of graphene nanocomposites. Nano Lett. 2011;12:84–90.
  • Kim H, Miura Y, Macosko CW. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater. 2010;22:3441–3450.10.1021/cm100477v
  • Qin W, Vautard F, Drzal LT, et al. Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos Part B: Eng. 2015;69:335–341.10.1016/j.compositesb.2014.10.014
  • Almajid A, Sorochynska L, Friedrich K, et al. Effects of graphene and CNT on mechanical, thermal, electrical and corrosion properties of vinylester based nanocomposites. Plastics, Rubber Compos. 2015;44:50–62.10.1179/1743289814Y.0000000117
  • Aguilar-Bolados H, Lopez-Manchado MA, Brasero J, et al. Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Compos Part B: Eng. 2016;87:350–356.10.1016/j.compositesb.2015.08.079
  • Saafi M, Tang L, Fung J, et al. Enhanced properties of graphene/fly ash geopolymeric composite cement. Cem Concr Res. 2015;67:292–299.10.1016/j.cemconres.2014.08.011
  • Taipalus R, Harmia T, Zhang MQ, et al. The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: experimental characterisation and modelling. Compos Sci Technol. 2001;61:801–814.10.1016/S0266-3538(00)00183-4
  • Hyunwoo K, Ahmed AA, Christopher WM. Graphene/polymer nanocomposites: graphite, graphene, and their polymer nanocomposites. Florida: CRC Press; 2012. p. 513–556.
  • Xiang-Ying J, Yan-Ping C, Xi-Qiao F. Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Modell Simul Mater Sci Eng. 2010;18:045005.
  • Lazic ZR. Design of experiments in chemical engineering: a practical guide. Weinheim: John Wiley & Sons; 2006.
  • Ali I, Jayaraman K, Bhattacharyya D. Effects of resin and moisture content on the properties of medium density fibreboards made from kenaf bast fibres. Ind Crops Prod. 2014;52:191–198.10.1016/j.indcrop.2013.10.013
  • Gopalsamy BM, Mondal B, Ghosh S. Taguchi method and ANOVA: an approach for process parameters optimization of hard machining while machining hardened steel. J Sci Ind Res. 2009;68:686–695.
  • Tchoudakov R, Breuer O, Narkis M, et al. Conductive polymer blends with low carbon black loading: polypropylene/polyamide. Polym Eng Sci. 1996;36:1336–1346.10.1002/(ISSN)1548-2634
  • Bilal A, Lin RJT, Jayaraman K. Optimal formulation of rice husk reinforced polyethylene composites for mechanical performance: a mixture design approach. J Appl Polym Sci. 2014;131.
  • Khamlich S, Barzegar F, Nuru ZY, et al. Polypyrrole/graphene nanocomposite: high conductivity and low percolation threshold. Synth Met. 2014;198:101–106.10.1016/j.synthmet.2014.10.004
  • Pandaa AK, Singhb R. Optimization of process parameters by Taguchi method: catalytic degradation of polypropylene to liquid fuel. J Multi Curr Res. 2013.
  • Chun SY, Chung WJ, Kim SS, et al. Optimization of the TiO2/Ge composition by the response surface method of photocatalytic degradation under ultraviolet-A irradiation and the toxicity reduction of amoxicillin. J Ind Eng Chem. 2015;27:291–296.10.1016/j.jiec.2015.01.003
  • Potts JR, Lee SH, Alam TM, et al. Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon. 2011;49:2615–2623.10.1016/j.carbon.2011.02.023
  • Thongruang W, Spontak RJ, Balik CM. Bridged double percolation in conductive polymer composites: an electrical conductivity, morphology and mechanical property study. Polymer. 2002;43:3717–3725.10.1016/S0032-3861(02)00180-5
  • Huang H, Xia Y, Tao X, et al. Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation – expansion – microexplosion mechanism. J Mater Chem. 2012;22:10452–10456.10.1039/c2jm00092j
  • Araujo PT, Terrones M, Dresselhaus MS. Defects and impurities in graphene-like materials. Mater Today. 2012;15:98–109.10.1016/S1369-7021(12)70045-7
  • Wehling TO, Katsnelson MI, Lichtenstein AI. Impurities on graphene: Midgap states and migration barriers. Phys Rev B. 2009;80:085428.10.1103/PhysRevB.80.085428
  • Ambrosi A, Chua CK, Khezri B, et al. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proc Nat Acad Sci. 2012;109:12899–12904.10.1073/pnas.1205388109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.