592
Views
11
CrossRef citations to date
0
Altmetric
Articles

Experimental and numerical analysis of flexural and impact behaviour of glass/pp sandwich panel for automotive structural applications

ORCID Icon, , ORCID Icon &
Pages 367-386 | Received 04 Jan 2017, Accepted 05 Oct 2017, Published online: 08 Nov 2017

References

  • Allen HG, Neal BG. Analysis and design of structural sandwich panels. Pergamon Press; 1969. ISBN: 9781483159041.
  • Petras A, Sutcliffe MP. Indentation failure analysis of sandwich beams. Compos Struct. 2000;50:311–318. DOI:10.1016/S0263-8223(00)00122-7.
  • Belingardi G, Cavatorta MP, Duella R. Material characterization of a composite–foam sandwich for the front structure of a high speed train. Compos Struct. 2003;61:13–25. DOI:10.1016/S0263-8223(03)00028-X.
  • Corigliano A, Rizzi E, Papa E. Experimental characterization and numerical simulations of a syntactic-foam/glass-fibre composite sandwich. Compos Sci Technol. 2000;60:2169–2180. DOI:10.1016/S0266-3538(00)00118-4.
  • Kim J, Swanson SR. Design of sandwich structures for concentrated loading. Compos Struct. 2001;52:365–373. DOI:10.1016/S0263-8223(01)00027-7.
  • Mouritz AP, Thomson RS. Compression, flexure and shear properties of a sandwich composite containing defects. Compos Struct. 1999;44:263–278. DOI:10.1016/S0263-8223(98)00133-0.
  • Gdoutos E, Daniel I, Wang K-A. Compression facing wrinkling of composite sandwich structures. Mech Mater. 2003;35:511–522. DOI:10.1016/S0167-6636(02)00267-3.
  • Dai J, Thomas Hahn H. Flexural behavior of sandwich beams fabricated by vacuum-assisted resin transfer molding. Compos Struct. 2003;61:247–253. DOI:10.1016/S0263-8223(03)00040-0.
  • Masters IG, Evans KE. Models for the elastic deformation of honeycombs. Compos Struct. 1996;35:403–422. DOI:10.1016/S0263-8223(96)00054-2.
  • Becker W. Closed-form analysis of the thickness effect of regular honeycomb core material. Compos Struct. 2000;48:67–70. DOI:10.1016/S0263-8223(99)00074-4.
  • Meraghni F, Desrumaux F, Benzeggagh ML. Mechanical behaviour of cellular core for structural sandwich panels. Compos Part A Appl Sci Manuf. 1999;30:767–779. DOI:10.1016/S1359-835X(98)00182-1.
  • Hu H, Belouettar S, Daya EM, et al. Evaluation of kinematic formulations for viscoelastically damped sandwich beam modeling. J Sandw Struct Mater. 2006;8:477–495. DOI:10.1177/1099636206065872.
  • Lee JY, Shin KB, Jeong JC. Experimental and numerical simulation studies of low-velocity impact responses on sandwich panels for a BIMODAL tram. Adv Compos Mater. 2009;18:1–20.10.1163/156855108X385311
  • Valenza A, Fiore V, Calabrese L. Three-point flexural behaviour of GFRP sandwich composites: a failure map. Adv Compos Mater. 2012;19:79–90.
  • Demelio G, Genovese K, Pappalettere C. An experimental investigation of static and fatigue behaviour of sandwich composite panels joined by fasteners. Compos Part B Eng. 2001;32:299–308. DOI:10.1016/S1359-8368(01)00007-5.
  • Burman M, Zenkert D. Fatigue of foam core sandwich beams – 2: effect of initial damage. Int J Fatigue. 1997;19:563–578. DOI:10.1016/S0142-1123(97)00068-6.
  • Thomsen OT. Theoretical and experimental investigation of local bending effects in sandwich plates. Compos Struct. 1995;30:85–101. DOI:10.1016/0263-8223(94)00029-8.
  • Dear JP, Lee H, Brown SA. Impact damage processes in composite sheet and sandwich honeycomb materials. Int J Impact Eng. 2005;32:130–154. DOI:10.1016/j.ijimpeng.2005.02.005.
  • Park JH, Ha SK, Kang KW, et al. Impact damage resistance of sandwich structure subjected to low velocity impact. J Mater Process Technol. 2008;201:425–430. DOI:10.1016/j.jmatprotec.2007.11.196.
  • Yang JN, Jones DL, Yang SH, et al. A stiffness degradation model for graphite/epoxy laminate. J Compos Mater. 1990;24:753–769.
  • Burman M, Zenkert D. Fatigue of foam core sandwich beams – 1: undamaged specimens. Int J Fatigue. 1997;19:551–561. DOI:10.1016/S0142-1123(97)00069-8.
  • Kuo W-S, Fang J, Lin H-W. Failure behavior of 3D woven composites under transverse shear. Compos Part A Appl Sci Manuf. 2003;34:561–575. DOI:10.1016/S1359-835X(03)00123-4.
  • Shenoi RA, Clark SD, Allen HG. Fatigue behaviour of polymer composite sandwich beams. J Compos Mater. 1995;29:2423–2445. DOI:10.1177/002199839502901803.
  • Whisler D, Kim H. Effect of impactor radius on low-velocity impact damage of glass/epoxy composites. J Compos Mater. 2012;46:3137–3149. DOI:10.1177/0021998312436991.
  • Castanié B, Bouvet C, Aminanda Y, et al. Modelling of low-energy/low-velocity impact on Nomex honeycomb sandwich structures with metallic skins. Int J Impact Eng. 2008;35:620–634. DOI:10.1016/j.ijimpeng.2007.02.008.
  • Corbett GG, Reid SR, Johnson W. Impact loading of plates and shells by free-flying projectiles: A review. Int J Impact Eng. 1996;18:141–230. DOI:10.1016/0734-743X(95)00023-4.
  • Mines R, Worrall CM, Gibson AG. Low velocity perforation behaviour of polymer composite sandwich panels. Int J Impact Eng. 1998;21:855–879. DOI:10.1016/S0734-743X(98)00037-2.
  • Langdon GS, Cantwell WJ, Nurick GN. The blast response of novel thermoplastic-based fibre-metal laminates – some preliminary results and observations. Compos Sci Technol. 2005;65:861–872. DOI:10.1016/j.compscitech.2004.09.025.
  • Her S-C, Liang Y-C. The finite element analysis of composite laminates and shell structures subjected to low velocity impact. Compos Struct. 2004;66:277–285. DOI:10.1016/j.compstruct.2004.04.049.
  • Tiberkak R, Bachene M, Rechak S, et al. Damage prediction in composite plates subjected to low velocity impact. Compos Struct. 2008;83:73–82. DOI:10.1016/j.compstruct.2007.03.007.
  • Davies GAO, Hitchings D, Wang J. Prediction of threshold impact energy for onset of delamination in quasi-isotropic carbon/epoxy composite laminates under low-velocity impact. Compos Sci Technol. 2000;60:1–7. DOI:10.1016/S0266-3538(99)00092-5.
  • Bouvet C, Castanié B, Bizeul M, et al. Low velocity impact modelling in laminate composite panels with discrete interface elements. Int J Solids Struct. 2009;46:2809–2821. DOI:10.1016/j.ijsolstr.2009.03.010.
  • Faggiani A, Falzon BG. Predicting low-velocity impact damage on a stiffened composite panel. Compos Part A Appl Sci Manuf. 2010;41:737–749. DOI:10.1016/j.compositesa.2010.02.005.
  • Feng D, Aymerich F. Damage prediction in composite sandwich panels subjected to low-velocity impact. Compos Part A Appl Sci Manuf. 2013;52:12–22. DOI:10.1016/j.compositesa.2013.04.010.
  • Aktay L, Johnson AF, Holzapfel M. Prediction of impact damage on sandwich composite panels. Comput Mater Sci. 2005;32:252–260. DOI:10.1016/j.commatsci.2004.09.044.
  • Davies GAO, Zhang X. Impact damage prediction in carbon composite structures. Int J Impact Eng. 1995;16:149–170. DOI:10.1016/0734-743X(94)00039-Y.
  • Giglio M, Gilioli A, Manes A. Numerical investigation of a three point bending test on sandwich panels with aluminum skins and Nomex honeycomb core. Comput Mater Sci. 2012;56:69–78. DOI:10.1016/j.commatsci.2012.01.007.
  • Gornet L, Marckmann G, Lombard M. Failure and elastic properties of Nomex® honeycombs: periodic homogeneization and mechanical simulation. Mécanique Ind. 2006;6:595–604.
  • Ijaz H, Asad M, Memon A, et al. Strain energy based homogenization method to find the equivalent orthotropic properties of sandwich structures. Sindh Univ Res Journa. 2014;46:93–98.
  • Gornet L, Marguet S, Marckmann G. Numerical modelling of Nomex® honeycomb cores: Failure and effective elastic properties. 3rd European Conference on Computational Mechanics; 2006.
  • Li X, Liu Q, Zhang J. A micro–macro homogenization approach for discrete particle assembly – Cosserat continuum modeling of granular materials. Int J Solids Struct. 2010;47:291–303. DOI:10.1016/j.ijsolstr.2009.09.033.
  • Forest S. Mechanics of Generalized Continua: Construction by Homogenization. J Phys IV. 1998;18:39–48.
  • Verpeaux P, Charras T, Millard A. CASTEM 2000: une approche moderne du calcul des structures. In: Fouet J-M, Ladeve`ze P and Ohayon R, editors. Calcul des structures et intelligence artificielle, Vol. 2. [ Collection methodes numeriques dans les sciences de l'ingenieur]. Saint Etienne: Pluralis; 1988. p. 261–271. Available from: http://www-cast3m.cea.fr/
  • Zhou Y, Mallick PK. Effects of temperature and strain rate on the tensile behavior of unfilled and talc-filled polypropylene. Part I: experiments. Polym Eng Sci. 2002;42:2449–2460. DOI:10.1002/pen.11131.
  • Vo TP, Guan ZW, Cantwell WJ, et al. Modelling of the low-impulse blast behaviour of fibre–metal laminates based on different aluminium alloys. Compos Part B Eng. 2013;44:141–151. DOI:10.1016/j.compositesb.2012.06.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.