529
Views
8
CrossRef citations to date
0
Altmetric
Articles

Investigation of temperature effect on the electrical properties of MWCNTs/epoxy nanocomposites by electrochemical impedance spectroscopy

ORCID Icon
Pages 31-41 | Received 07 Nov 2018, Accepted 06 Feb 2019, Published online: 15 May 2019

References

  • Kanoun O, Müller C, Benchirouf A, et al. Flexible carbon nanotube films for high performance strain sensors. Sensors. 2014;14(6):10042–10071.
  • Sanli A, Müller C, Kanoun O, et al. Piezoresistive characterization of multi-walled carbon nanotube-epoxy based flexible strain sensitive films by impedance spectroscopy. Compos Sci Technol. 2016;122:18–26.
  • Sanli A, Benchirouf A, Müller C, et al. Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sens Actuators A. 2017;254:61–68.
  • Sanli A, Ramalingame R, Kanoun O Piezoresistive pressure sensor based on carbon nanotubes/epoxy composite under cyclic loading. IEEE International Instrumentation and Measurement Technology Conference (I2MTC); 2018; Texas, USA.
  • Sharma R, Al-Hamry A, Vijayragavan S, et al. Single-wall carbon nanotubes based near-infrared sensors on flexible substrate. In IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD); 2014; Barcelna, Spain.
  • Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87(21):215502.
  • Sandler J, Shaffer MSP, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer. 1999;40(21):5967–5971.
  • Neitzert HC, Vertuccio L, Sorrentino A. Epoxy/MWCNT composite as temperature sensor and electrical heating element. IEEE Trans Nanotechnol. 2011;10(4):688–693.
  • Karimov KS, Abid М, Saleem M, et al. Temperature gradient sensor based on CNT composite. Phys B Condens Matter. 2014;446:39–42.
  • Gong S, Wang Y, Xiao Z, et al. Effect of temperature on the electrical property of epoxy composites with carbon nanotube. Compos Sci Technol. 2017;149:48–54.
  • Matzeu G, Pucci A, Savi S, et al. A temperature sensor based on a MWCNT/SEBS nanocomposite. Sens Actuators A. 2012;178:94–99.
  • Yoo KP, Lim LT, Min NK, et al. Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens Actuators B Chem. 2010;145(1):120–125.
  • Yu H, Cao T, Zhou L, et al. Layer-by-Layer assembly and humidity sensitive behavior of poly (ethyleneimine)/multiwall carbon nanotube composite films. Sens Actuators B Chem. 2006;119(2):512–515.
  • Colakoglu M. Effect of temperature on frequency and damping properties of polymer matrix composites. Adv Compos Mater. 2008;17(2):111–124.
  • Shaktawat V, Pothan LA, Saxena NS, et al. Temperature dependence of thermo-mechanical properties of banana fiber-reinforced polyester composites. Adv Compos Mater. 2008;17(1):89–99.
  • Macdonald JR. Impedance spectroscopy: models, data fitting, and analysis. Solid State Ion. 2005;176(25–28):1961–1969.
  • Barsoukov E, Macdonald JR. (editors). Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, 2018.
  • Bonanos N., Steele B. C. H.Butler E. P. 2005. Applications of impedance spectroscopy. Impedance Spectroscopy:205–537. doi: 10.1002/0471716243.ch4.
  • Stassi S, Sacco A, Canavese G. Impedance spectroscopy analysis of the tunnelling conduction mechanism in piezoresistive composites. J Phys D Appl Phys. 2014;47(34):345306.
  • Parmar K, Mahmoodi M, Park C, et al. Effect of CNT alignment on the strain sensing capability of carbon nanotube composites. Smart Mater Struct. 2013;22(7):075006.
  • Narh KA, Jallo L, Rhee KY. The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide. Polym Composites. 2008;29(7):809–817.
  • Park SH, Bandaru PR. Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages. Polymer. 2010;51(22):5071–5077.
  • He XJ, Du JH, Ying Z, et al. Positive temperature coefficient effect in multiwalled carbon nanotube/high-density polyethylene composites. Appl Phys Lett. 2005;86(6):062112.
  • Li Q, Xue Q, Gao XL, et al. Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. Express Polym Lett. 2009;3(12):769–777.
  • Alamusi A, Hu N, Qiu J, Li Y, Chang CAtobe S, et al. Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites. Nanoscale Research Letters [Internet]. Springer Nature; 2013;8(1):15. Available from: http://dx.doi.org/10.1186/1556-276x–8–15
  • Wu FY, Cheng HM. Structure and thermal expansion of multi-walled carbon nanotubes before and after high temperature treatment. J Phys D Appl Phys. 2005;38(24):4302–4307.
  • Deng L, Young RJ, Kinloch IA, et al. Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy. Appl Phys Lett. 2014;104(5):051907.
  • Shirasu K, Nakamura A, Yamamoto G, et al. Potential use of CNTs for production of zero thermal expansion coefficient composite materials: an experimental evaluation of axial thermal expansion coefficient of CNTs using a combination of thermal expansion and uniaxial tensile tests. Compos Part A Appl Sci Manuf. 2017;95:152–160.
  • Hindermann-Bischoff M, Ehrburger-Dolle F. Electrical conductivity of carbon black–polyethylene composites: experimental evidence of the change of cluster connectivity in the PTC effect. Carbon. 2001;39(3):375–382.
  • Lee JH, Kim SK, Kim NH. Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites. Scr Mater. 2006;55(12):1119–1122.
  • Li Alamusi, Y., Hu N., Wu L., Yuan W., Peng X., Gu B., Chang C., Liu Y., Ning H., Li J., Atobe Surina, S.Fukunaga H., Temperature-dependent piezoresistivity in an mwcnt/epoxy nanocomposite temperature sensor with ultrahigh performance. Nanotechnology. 2013 Oct;24(45):455501.
  • Li Q, Xue Q, Gao XL, et al. Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. Express Polym Lett. 2009;3(12):769–777.
  • Mohiuddin M, Van Hoa S. Electrical resistance of CNT-PEEK composites under compression at different temperatures. Nanoscale Res Lett. 2011;6(1):419.
  • Tehrani M, Safdari M, Al-Haik MS. Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int J Plast. 2011;27(6):887–901.
  • Starkova O, Chandrasekaran S, Prado LASA, et al. Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites. Polym Degrad Stab. 2013;98(2):519–526.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.