322
Views
5
CrossRef citations to date
0
Altmetric
Articles

Development of strain monitoring system for glass fiber reinforced composites via embedded electrically conductive pathways

ORCID Icon &
Pages 653-673 | Received 14 Aug 2018, Accepted 02 Jun 2019, Published online: 14 Jun 2019

References

  • Kousourakis A, Bannister MK, Mouritz AP. Tensile and compressive properties of polymer laminates containing internal sensor cavities. Compos Part A Appl Sci Manuf. 2008;39:1394–1403.
  • Norris CJ, Meadway GJ, O’Sullivan MJ, et al. Self-healing fibre reinforced cositompes via a bioinspired vasculature. Adv Funct Mater. 2011;21:3624–3633.
  • Wu AS, Coppola AM, Sinnott MJ, et al. Sensing of damage and healing in three-dimensional braided composites with vascular channels. Compos Sci Technol. 2012;72:1618–1626.
  • Huang C, Trask RS, Bond IP. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature. J R Soc Interface. 2010;7:1229–1241.
  • Esser-Kahn AP, Thakre PR, Dong H, et al. Three-dimensional microvascular fiber-reinforced composites. Adv Mater. 2011;23:3654–3658.
  • Coppola AM, Thakre PR, Sottos NR, et al. Tensile properties and damage evolution in vascular 3D woven glass/epoxy composites. Compos Part A Appl Sci Manuf. 2014;59:9–17.
  • Gergely RCR, Pety SJ, Krull BP, et al. Multidimensional vascularized polymers using degradable sacrifi cial templates. Adv Funct Mater. 2015;25:1043–1052.
  • Phillips DM, Ryan Pierce M, Baur JW. Mechanical and thermal analysis of microvascular networks in structural composite panels. Compos Part A Appl Sci Manuf. 2011;42:1609–1619.
  • Soghrati S, Najafi AR, Lin JH, et al. Computational analysis of actively-cooled 3D woven microvascular composites using a stabilized interface-enriched generalized finite element method. Int J Heat Mass Transf. 2013;65:153–164.
  • Coppola AM, Warpinski LG, Murray SP, et al. Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading. Compos PART A. 2016;82:170–179.
  • Patrick JF, Hart KR, Krull BP, et al. Continuous self-healing life cycle in vascularized structural composites. Adv Mater. 2014;26:4302–4308.
  • Barton DP. 2004. Comparative vacuum monitoring: a new method of in-situ real- time crack detection and monitoring.
  • Roach D. Real time crack detection using mountable comparative vacuum monitoring sensors. Smart Struct Syst. 2009;5:317–328.
  • Mitschang P, Molnár P, Ogale A, et al. Cost-effective structural health monitoring of FRPC parts for automotive applications. Adv Compos Mater. 2007;16:135–149.
  • Yasuoka T, Shimamura Y, Todoroki A. Electrical resistance change under strain of CNF/flexible-epoxy composite. Adv Compos Mater. 2010;19:123–138.
  • Nishio Y, Todoroki A, Mizutani Y, et al. Piezoresistive effect of plain-weave CFRP fabric subjected to cyclic loading. Adv Compos Mater. 2017;26:229–243.
  • Park JM, Kwon DJ, Wang ZJ, et al. Review of self-sensing of damage and interfacial evaluation using electrical resistance measurements in nano/micro carbon materials-reinforced composites. Adv Compos Mater. 2015;24:197–219.
  • Samsur R, Rangari VK, Jeelani S, et al. Fabrication of carbon nanotubes grown woven carbon fiber/epoxy composites and their electrical and mechanical properties fabrication of carbon nanotubes grown woven carbon fiber/epoxy composites and their electrical and mechanical properties. J Appl Phys. 2013;113:214903.
  • Grammatikos SA, Paipetis AS. On the electrical properties of multi scale reinforced composites for damage accumulation monitoring. Compos Part B. 2012;43:2687–2696.
  • Wichmann MHG, Meyer LO, Schulte K. Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos Sci Technol. 2008;68:1886–1894.
  • Siddiqui NA, Li EL, Sham M, et al. Tensile strength of glass fibres with carbon nanotube – epoxy nanocomposite coating : effects of CNT morphology and dispersion state. Compos Part A. 2010;41:539–548.
  • Ma PC, Siddiqui NA, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf. 2010;41:1345–1367.
  • Kim S, Lee WI, Park CH. Assessment of carbon nanotube dispersion and mechanical property of epoxy nanocomposites by curing reaction heat measurement. J Reinf Plast Compos. 2016;35:71–80.
  • Park J-M, Jang J-H, Wang Z-J, et al. Dispersion and related properties of acid-treated carbon nanotube/epoxy composites using electro-micromechanical, surface wetting and single carbon fiber sensor tests. Adv Compos Mater. 2011;20:337–360.
  • Ghorbanpour Arani A, Rousta Navi B, Mohammadimehr M. Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches. Adv Compos Mater. 2016;25:423–441.
  • Rangari VK, Samsur R, Jeelani S. Mechanical, thermal, and electrical conducting properties of CNTs/bio-degradable polymer thin films. J Appl Polym Sci. 2013;129:1249–1255.
  • Kwon D, Shin P, Kim J, et al. Evaluation of optimal dispersion conditions for CNT reinforced epoxy composites using cyclic voltammetry measurements. Adv Compos Mater. 2017;3046. DOI:10.1080/09243046.2016.1256072.
  • Nam TH, Goto K, Oshima K, et al. Mechanical property enhancement of aligned multi-walled carbon nanotube sheets and composites through press-drawing process. Adv Compos Mater. 2016;25:73–86.
  • Ogasawara T, Hanamitsu S, Ogawa T, et al. Mechanical properties of cross-ply and quasi-isotropic composite laminates processed using aligned multi-walled carbon nanotube/epoxy prepreg. Adv Compos Mater. 2017;26:157–168.
  • Moaseri E, Karimi M, Baniadam M, et al. Improvements in mechanical properties of multi-walled carbon nanotube-reinforced epoxy composites through novel magnetic-assisted method for alignment of carbon nanotubes. Compos PART A. 2014;64:228–233.
  • Dong H, Esser-Kahn AP, Thakre PR, et al. Chemical treatment of poly (lactic acid) fibers to enhance the rate of thermal depolymerization. ACS Appl Mater Interfaces. 2012;4:503–509.
  • Nguyen DT, Leho YT, Esser-Kahn AP. Process of making three-dimensional microstructures using vaporization of a sacrificial component. J Vis Exp. 2013;e50459–e50459. DOI:10.3791/50459
  • Ma C, Liu H, Du X, et al. Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field. Compos Sci Technol. 2015;114:126–135.
  • Schroder DK. Semiconductor material and device characterization. New York, USA. Wiley-Interscience; 2006.
  • Arguin M, Sirois F, Therriault D, et al. Electric field induced alignment of multiwalled carbon nanotubes in polymers and multiscale composites electric field induced alignment of multiwalled carbon nanotubes in polymers and multiscale composites. Adv Manuf Polym Compos Sci. 2015;0340. DOI:10.1179/2055035914Y.0000000003
  • Jangam S, Raja S, Gowd BUM. Influence of multiwall carbon nanotube alignment on vibration damping of nanocomposites. J Reinf Plast Compos. 2016;35:617–627.
  • Song YS, Youn JR. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon N Y. 2005;43:1378–1385.
  • Gojny FH, Wichmann MHG, Fiedler B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer.2006;47:2036–2045.
  • Silva JMA, Devezas TC, Silva AP, et al. Mechanical characterization of composites with embedded optical fibers. J Compos Mater. 2005;39:1261–1281.
  • Häntzsche E, Matthes A, Nocke A, et al. Physical characteristics of carbon fiber based strain sensors for structural-health monitoring of textile-reinforced thermoplastic composites depending on the textile technological integration process. Sens Actuators A Phys. 2013;203:189–203.
  • Yasuoka T, Shimamura Y, Todoroki A. Electrical resistance change under strain of CNF/flexible-epoxy composite. Adv Compos Mater. 2012;3046. DOI:10.1163/092430410X490446
  • Wang G, Wang Y, Zhang P, et al. Structure dependent properties of carbon nanomaterials enabled fiber sensors for in situ monitoring of composites. Compos Struct. 2018. DOI:10.1016/j.compstruct.2018.04.052.
  • Alamusi HN, Fukunaga H, Atobe S, et al. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors. 2011;11:10691–10723.
  • Vieito AJP, Van Hattum F, Silva J, et al. The piezoresistive effect in polypropylene — carbon nanofibre composites obtained by shear extrusion. Smart Mater Struct. 2010. DOI:10.1088/0964-1726/19/6/065013
  • Hu N, Karube Y, Arai M, et al. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon N Y. 2010;48:680–687.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.