304
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effects of porosity on the fatigue life of polyamide 12 considering crack initiation and propagation

, , &
Pages 399-421 | Received 31 Jan 2020, Accepted 02 Mar 2020, Published online: 15 Mar 2020

References

  • Hudson JA, Liu E, Crampin S. The mechanical properties of materials with interconnected cracks and pores. Geophys J Int. 1996;124:105–112.
  • Hao GL, Xu QP, Wang H, et al. Effect of pore structure on mechanical properties of porous TiAl. Mater Sci Tech Lond. 2016;32(15):1592–1596.
  • Tammas-Williams S, Withers PJ, Todd I, et al. The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci Rep-Uk. 2017;1-13.
  • Villar CEF, Nogueira REFQ, Carvalho LAM, et al. Influence of pores on the failure of structural ceramic blocks. Constr Build Mater. 2008;22(12):2376–2381.
  • Xu ZQ, Wen W, Zhai TG. Effects of pore position in depth on stress/strain concentration and fatigue crack initiation. Metall Mater Trans A-Phys Metall Mater Sci. 2012;43a(8):2763–2770. .
  • Veljovic D, Jancic-Hajneman R, Balac I, et al. The effect of the shape and size of the pores on the mechanical properties of porous HAP-based bioceramics. Ceram Int. 2011;37(2):471–479.
  • Sevostianov I, Kushch V. Effect of pore distribution on the statistics of peak stress and overall properties of porous material. Int J Solids Struct. 2009;46(25–26):4419–4429.
  • de Jesus AMP, da Silva ALL, Correia JAFO. Fatigue of riveted and bolted joints made of puddle iron-A numerical approach. J Constr Steel Res. 2014;102:164–177. .
  • Weibull W. Fatigue testing and analysis of results. London: Pergamon Press LTD; 1961.
  • Lee YL, Pan J, Hathaway RB, et al. Fatigue testing and analysis (Theory and practice). Burlington, MA: Elsevier; 2005.
  • Castillo E, Fernandez-Canteli A, Hadi AS. On fitting a fatigue model to data. Int J Fatigue. 1999;21(1):97–106.
  • Castillo E, Fernandez-Canteli A. A parametric lifetime model for the prediction of high-cycle fatigue based on stress level and amplitude. Fatigue Fract Eng Mater Struct. 2006;29(12):1031–1038.
  • Ellyin F. Fatigue damage, crack growth and life prediction. Berlin, Germany: Springer; 1997.
  • Morrow JD. Cyclic plastic strain energy and fatigue of metals. In: Lazan B, editor. Internal friction, damping, and cyclic plasticity. West Conshohocken, PA: ASTM International; 1965. p. 45–87.
  • Ramberg W, Osgood WR Description of stress-strain curves by three parameters. no. Technical Report No. 992. Washington, DC.: National Advisory Committee for Aeronautics, 1943..
  • Castillo E, Fernandez-Canteli A. A general regression model for lifetime evaluation and prediction. Int J Fracture. 2001;107(2):117–137.
  • Patil N, Mahadevan P, Chatterjee A. A constructive empirical theory for metal fatigue under block cyclic loading. P Roy Soc a-Math Phy. 2008;464(2093):1161–1179. .
  • Cusumano JP, Chatterjee A. Steps towards a qualitative dynamics of damage evolution. Int J Solids Struct. 2000;37(44):6397–6417.
  • Castillo E, Fernandez-Canteli A, Pinto H, et al. A statistical model for crack growth based on tension and compression Wohler fields. Eng Fract Mech. 2008;75(15):4439–4449.
  • Plekhov O, Paggi M, Naimark O, et al. A dimensional analysis interpretation to grain size and loading frequency dependencies of the Paris and Wohler curves. Int J Fatigue. 2011;33(3):477–483.
  • Paggi M, Carpinteri A. Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue. Chaos Solitons Fractals. 2009;40(3):1136–1145.
  • Carpinteri A, Paggi M. A unified interpretation of the power laws in fatigue and the analytical correlations between cyclic properties of engineering materials. Int J Fatigue. 2009;31(10):1524–1531.
  • Castillo E, Fernandez-Canteli A, Siegele D. Obtaining S-N curves from crack growth curves: an alternative to self-similarity. Int J Fracture. 2014;187(1):159–172.
  • Tada H, Paris PC, Irwin GR. The stress analysis of cracks handbook. 3rd ed. New York: ASME Press; 2000.
  • Carpinteri A, Spagnoli A. A fractal analysis of size effect on fatigue crack growth. Int J Fatigue. 2004;26(2):125–133.
  • Spagnoli A. Self-similarity and fractals in the Paris range of fatigue crack growth. Mech Mater. 2005;37(5):519–529.
  • Ritchie RO. Incomplete self-similarity and fatigue-crack growth. Int J Fract. 2005;132(3):197–203.
  • Pugno N, Ciavarella M, Cornetti P, et al. A generalized Paris’ law for fatigue crack growth. J Mech Phys Solids. 2006;54(7):1333–1349.
  • Paris P, Erdogan F. A critical analysis of crack propagation laws. J Basic Eng. 1960;85(4):528–534.
  • Forman RG, Kearney VE, Engle RM. Numerical analysis of crack propagation in cyclic-loaded structures. J Basic Eng. 1967;89(3):459–463.
  • Erdogan F, Ratwani M. Fatigue and fracture of cylindrical shells containing a circumferential crack. Int J Fract Mech. 1970;6(4):379–392. .
  • Forman RG, Mettu SR. Behavior of surface and corner cracks subjected to tensile and bending loads in ti 6al-4v alloy. In: Ernst HASA, McDowell DL, editors. Philadelphia: Publisher; 1992; 1-68.
  • Author. Fatigue crack growth computer program NASGRO Version 3.0-reference manual; NASA Langley Research Center: Hampton, VA United states 2000.
  • Agha HY, Beranger AS, Billardon R, et al. High-cycle fatigue behaviour of spheroidal graphite cast iron. Fatigue <html_ent Glyph=“@amp;” Ascii=“&”></html_ent> Fracture of Engineering Materials and Structures. 1998;21(3):287–296.
  • Chantier I, Bobet V, Billardon R, et al. A probabilistic approach to predict the very high-cycle fatigue behaviour of spheroidal graphite cast iron structures. Fatigue <html_ent Glyph=“@amp;” Ascii=“&”></html_ent> Fracture of Engineering Materials and Structures. 2000;23(2):173–180.
  • Noroozi AH, Glinka G, Lambert S. A two parameter driving force for fatigue crack growth analysis. Int J Fatigue. 2005;27(10–12):1277–1296.
  • De Jesus AMP, Correia JAFO. Critical assessment of a local strain-based fatigue crack growth model using experimental data available for the P355NL1 steel. J Press Vess-T Asme. 2013;135-144.
  • Correia JAFO, Blason S, De Jesus AMP, et al. Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model. Eng Fail Anal. 2016;69:15–28.
  • Xiang YB, Lu ZZ, Liu YM. Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: uniaxial loading. Int J Fatigue. 2010;32(2):341–349.
  • Liu YM, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution. Int J Fatigue. 2009;31(3):476–487.
  • Chapetti MD. Fatigue propagation threshold of short cracks under constant amplitude loading. Int J Fatigue. 2003;25(12):1319–1326.
  • Tanaka K, Nakai Y, Yamashita M. Fatigue Growth Threshold of Small Cracks. Int J Fract. 1981;17:519–533.
  • Merati A, Eastaugh G. Determination of fatigue related discontinuity state of 7000 series of aerospace aluminum alloys. Eng Fail Anal. 2007;14(4):673–685.
  • Krasnowski BR, Rotenberger KM, Spence WW. A damage tolerance method for helicopter dynamic components. J Am Helicopter Soc. 1991;36(2):52–60. .
  • Anderson TL. Fracture mechanics: fundamentals and applications. CRC Press:Florida, United state; 2005.
  • Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech. 1968;35(2):379–386.
  • Krueger R. Virtual crack closure technique: history, approach, and applications. Appl Mech Rev. 2004;57(2):109–143.
  • Jang JH, Ahn SH. Computation of energy release rates for composite beam through cross-sectional analysis and virtual crack closure technique. Adv Compos Mater. 2018;27(6):615–636.
  • Sanches RF, de Jesus AMP, Correia JAFO, et al. A probabilistic fatigue approach for riveted joints using Monte Carlo simulation. J Constr Steel Res. 2015;110:149–162. .
  • Asumani O, Paskaramoorthy R .Fatigue and impact strengths of kenaf fibre reinforced polypropylene composites: effects of fibre treatments. Adv Compos Mater. 2020:1–13. Published on-line Feb 22 2020. doi:10.1080/09243046.2020.1733308.
  • Svensson T. Mean Value Influence in Fatigue - on the rational choice of model complexity. Int J Fatigue. 2003; 212-220.
  • Dowling NE. Mean stress effects in strain-life fatigue. Fatigue Fract Eng Mater Struct. 2009;32(12):1004–1019.
  • Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. In: Effects of environment and complex load histories on fatigue life. Philadelphia, PA: ASTM STP 462; 1970; 93-104.
  • Maierhofer J, Pippan R, Ganser HP. Modified NASGRO equation for physically short cracks. Int J Fatigue. 2014;59:200–207.
  • NASA-JSC. NASGRO® fracture mechanics and fatigue crack growth analysis software. NASA-JSC and Southwest Research Institute, Houston, Texas; 2006.
  • Forman RG, Mettu SR. Behavior of surface and corner cracks subjected to tensile and bending loads in Ti–6Al–4V alloy. In: Ernst HA, Saxena A, McDowell DL, editors. Philadelphia: Publisher; 1992 1-64
  • Newman JC. A crack opening stress equation for fatigue crack-growth. Int J Fract. 1984;24(4):R131–R5.
  • Forman RG. Study of fatigue crack initiation from flaws using fracture mechanics theory. Eng Fract Mech. 1972;4(2):333–345.
  • Hartman A, Schijve A. The effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloys. Eng Fract Mech. 1970;1(4):615–631.
  • Kruzic JJ, Ritchie RO. Kitagawa-Takahashi diagrams define the limiting conditions for cyclic fatigue failure in human dentin. J Biomed Mater Res A. 2006;79a(3):747–751.
  • Dowling NE, Begley JA. Fatigue crack growth during gross plasticity and the J-integral. Mechanics of crack growth. West Conshohocken, PA: ASTM International; 1976. p. 82–103.
  • Fe-safe fatigue theroy reference manual. In: Limited St, editor; SIMULIA, 2002:
  • Fischer M. Material properties of additive manufactured polymer parts. Inside 3D Printing Conference and Expo: Seoul, South korea; 2014.
  • MatWeb. Overview of materials for Nylon 12. Available from: http://www.matweb.com/search/datasheetText.aspx?bassnum=O2640.
  • Society of Automotive Engineers. SAE fatigue design handbook: society of automotive engineers; Warrendale,1968.
  • Hong R, Zhao ZH, Leng J, et al. Two-step approach based on selective laser sintering for high performance carbon black/polyamide 12 composite with 3D segregated conductive network. Composites Part B-Eng. 2019;176, 107214.
  • Wang XH, Jiao QZ, Gao MM, et al. Controllable preparation of polyamide 12@SiO2 composite powders. Polym Composites. 2019;40(3):1251–1257.
  • Chatterjee S, Nuesch FA, Chu BTT. Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites. Nanotechnology. 2011;22(27):275714.
  • ASTM. 2014. Standard test method for tensile properties of plastics. In: ASTM, editor.
  • ASTM. 2017. Standard test method for uniaxial fatigue properties of plastics. In: ASTM, editor.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.