276
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fatigue life prediction of CFRP laminates with stress concentration lamina level failure criteria

, , , & ORCID Icon
Pages 792-812 | Received 18 Sep 2022, Accepted 16 Nov 2022, Published online: 30 Nov 2022

References

  • Alam P, Mamalis D, Robert C, et al. The fatigue of carbon fibre reinforced plastics - A review. Compos Part B Eng. 2019;166:555–579.
  • Sevenois R, Van Paepegem W. Fatigue damage modeling techniques for textile composites: review and comparison with unidirectional composite modeling techniques. Appl Mech Rev. 2015;67(2). DOI:10.1115/1.4029691
  • Joris D, Van Paepegem W. Fatigue damage modeling of fibre-reinforced composite materials: review. Appl Mech Rev. 2001;54(4):279–300.
  • Hashin Z, Rotem A. A fatigue failure criterion for fiber reinforced materials. J Compos Mater. 1973;7(4):448–464.
  • Hashin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics. 1980;47(2):329–334.
  • Philippidis T, Vassilopoulos A. Fatigue strength prediction under multiaxial stress. J Compos Mater. 1999;33(17):1578–1599.
  • Puck A, Kopp J, Knops M. Guidelines for the determination of the parameters in Puck’s action plane strength criterion. Compos Sci Technol. 2002;62(3):371–378.
  • Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. In: Hinton MJ, Kaddour AS, and Soden PD, (Eds.), Failure criteria in fibre-reinforced-polymer composites. Elsevier; 2004. p. 832–876.
  • Davila CG, Camanho PP, Rose CA. Failure criteria for FRP laminates. J Compos Mater. 2005;39(4):323–345.
  • Miyano Y, Nakada M, Kudoh H, et al. Prediction of tensile fatigue life for unidirectional CFRP. J Compos Mater. 2000;34(7):538–550.
  • Epaarachchi JA, Clausen PD. An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies. Compos Part A Appl Sci Manuf. 2003;34(4):313–326.
  • Yao W, Himmel N. A new cumulative fatigue damage model for fibre-reinforced plastics. Compos Sci Technol. 2000;60(1):59–64.
  • Caprino G, D’Amore A. Flexural fatigue behaviour of random continuous-fibre-reinforced thermoplastic composites. Compos Sci Technol. 1998;58(6):957–965.
  • Caprino G. Predicting fatigue life of composite laminates subjected to tension-tension fatigue. J Compos Mater. 2000;34(16):1334–1355.
  • Post N, Cain J, McDonald KJ, et al. Residual strength prediction of composite materials: random spectrum loading. Eng Fract Mech. 2008;75(9):2707–2724.
  • Hwang W, Han K. Cumulative damage models and multi-stress fatigue life prediction. J Compos Mater. 1986;20(2):125–153.
  • Yang J, Jones DL, Yang SH, et al. A stiffness degradation model for graphite/epoxy laminates. J Compos Mater. 1990;24(7):753–769.
  • Yang J, Lee L, Sheu D. Modulus reduction and fatigue damage of matrix dominated composite laminates. Compos Struct. 1992;21(2):91–100.
  • Whitworth H. A stiffness degradation model for composite laminates under fatigue loading. Compos Struct. 1997;40(2):95–101.
  • Whitworth H. Evaluation of the residual strength degradation in composite laminates under fatigue loading. Compos Struct. 2000;48(4):261–264.
  • Khan Z, Al-Sulaiman FA, Farooqi JK, et al. Fatigue life predictions in woven carbon fabric/polyester composites based on modulus degradation. J Reinf Plast Compos. 2001;20(5):377–398.
  • Papanikos P, Tserpes K, Pantelakis S. Modelling of fatigue damage progression and life of CFRP laminates. Fatigue Fract Eng Mater Struct. 2003;26(1):37–47.
  • Ye L. Role of matrix resin in delamination onset and growth in composite laminates. Compos Sci Technol. 1988;33(4):257–277.
  • Mao H, Mahadevan S. Fatigue damage modelling of composite materials. Compos Struct. 2002;58(4):405–410.
  • Kennedy CR, Brádaigh CMÓ, Leen SB. A multiaxial fatigue damage model for fibre reinforced polymer composites. Compos Struct. 2013;106:201–210.
  • Nikishkov Y, Makeev A, Seon G. Progressive fatigue damage simulation method for composites. Int J Fatigue. 2013;48:266–279.
  • Xu J, Lomov SV, Verpoest I, et al. A progressive damage model of textile composites on meso-scale using finite element method: fatigue damage analysis. Comput Struct. 2015;152:96–112.
  • Aoki R, Higuchi R, Yokozeki T. Fatigue simulation for progressive damage in CFRP laminates using intra-laminar and inter-laminar fatigue damage models. Int J Fatigue. 2021;143:106015.
  • Nixon-Pearson OJ, Hallet SR, Harper PW, et al. Damage development in open-hole composite specimens in fatigue. Part 2: numerical modelling. Compos Struct. 2013;Vol. 106:890–898.
  • Satapathy MR, Vinayak BG, Jayaprakash K, et al. Fatigue behavior of laminated composites with a circular hole under in-plane multiaxial loading. Mater Des. 2013;51:347–356.
  • Xiaoxue Diao LY, Mai Y-W, Mai Y-W. Simulation of fatigue performance of cross-ply composite laminates. Appl Compos Mater. 1996;3(6):391–406.
  • Shokrieh MM, Lessard LB. Progressive fatigue damage modeling of composite materials, Part II: material characterization and model verification. J Compos Mater. 2000;34(13):1081–1116.
  • Maligno A, Warrior N, Long A. Effects of inter-fibre spacing on damage evolution in unidirectional (UD) fibre-reinforced composites. Eur J Mech -A/Solids. 2009;28(4):768–776.
  • Maligno A, Warrior N, Long A. Effects of interphase material properties in unidirectional fibre reinforced composites. Compos Sci Technol. 2010;70(1):36–44.
  • Puck A, Mannigel M. Physically based non-linear stress–strain relations for the inter-fibre fracture analysis of FRP laminates. Compos Sci Technol. 2007;67(9):1955–1964.
  • Knops M, Bögle C. Gradual failure in fibre/polymer laminates. Compos Sci Technol. 2006;66(5):616–625.
  • Kontermann C, Scholz A, Oechsner M. A method to reduce calculation time for FE simulations using constitutive material models. Mater High Temp. 2014;31(4):334–342.
  • Naghipour P, Pineda EJ, Bednarcyk BA, et al. Fatigue analysis of notched laminates: a time-efficient macro-mechanical approach. J Compos Mater. 2016;51(15):2163–2180.
  • Leidermark D, Simonsson K. Procedures for handling computationally heavy cyclic load cases with application to a disc alloy material. Mater High Temp. 2019;36(5):447–458.
  • Turon A, Costa J, Camanho PP, et al. Simulation of delamination in composites under high-cycle fatigue. Compos Part A Appl Sci Manuf. 2007;38(11):2270–2282.
  • Eliopoulos EN, Philippidis TP. A progressive damage simulation algorithm for GFRP composites under cyclic loading. Part II: FE implementation and model validation. Compos Sci Technol. 2011;71(5):750–757.
  • Shokrieh MM. Progressive fatigue damage modeling of composite materials, Part I: Modeling. J Compos Mater. 1996;34(13):1056-1080.
  • Xiaoxue Diao LBL, Mahmood MS, Shokrieh MM. Statistical model for multiaxial fatigue behavior of unidirectional plies. Compos Sci Technol. 1999;59(13):2025–2035.
  • Herrington PD, Sabbaghian M. Fatigue failure of composite bolted joints. J Compos Mater. 1993;27(5):491–512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.