297
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Enhanced thermal conductivity of polyamide nanocomposites involving expanded graphite–carbon nanotube network structure using supercritical CO2

, , & ORCID Icon
Pages 832-842 | Received 04 Sep 2022, Accepted 14 Dec 2022, Published online: 06 Jan 2023

References

  • Yang Y, Tao JR, Yang D, et al. Improving dispersion and delamination of graphite in biodegradable starch materials via constructing cation-π interaction: towards microwave shielding enhancement. J Mater Sci Technol. 2022;129:196–205.
  • Chen YF, Huang ML, Cai JH, et al. Piezoresistive anisotropy in conductive silicon rubber/multi-walled carbon nanotube/nickel particle composites via alignment of nickel particles. Compos Sci Technol. 2022;225:109520.
  • Yang D, Tao JR, Yang Y, et al. Effect interfacial size and multiple interface on electromagnetic shielding of silicon rubber/carbon nanotube composites with mixing segregated particles. Compos Struct. 2022;292:115668.
  • Tao JR, Yang D, Yang Y, et al. Migration mechanism of carbon nanotubes and matching viscosity-dependent morphology in Co-continuous Poly (lactic acid)/Poly (ε-caprolactone) blend: towards electromagnetic shielding enhancement. Polym. 2022;252:124963.
  • Chen J, Zhu Y, Guo Z, et al. Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng Sci. 2020;12(19):13–22.
  • Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci. 2011;36(7):914–944.
  • Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87(21):215502.
  • Liem H, Choy H. Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers. Solid State Commun. 2013;163:41–45.
  • Shoeib T, El Aribi H, Siu KM, et al. A study of silver (I) ion− organonitrile complexes: ion structures, binding energies, and substituent effects. J Phys Chem A. 2001;105(4):710–719.
  • Pierson HO. Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. New Jersey (US): William Andrew; 2012.
  • Jouni M, Boudenne A, Boiteux G, et al. Electrical and thermal properties of polyethylene/silver nanoparticle composites. Polym Compos. 2013;34(5):778–786.
  • Danes F, Garnier B, Dupuis T. Predicting, measuring, and tailoring the transverse thermal conductivity of composites from polymer matrix and metal filler. Int J Thermophys. 2003;24(3):771–784.
  • Luyt A, Molefi J, Krump H. Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polym Degrad Stabil. 2006;91(7):1629–1636.
  • Mu Q, Feng S, Diao G. Thermal conductivity of silicone rubber filled with ZnO. Polym Compos. 2007;28(2):125–130.
  • Lee SH, Choi Y. Electro-physical properties of composites with nano-sized oxides. J Nanosci Nanotechnol. 2013;13(11):7610–7614.
  • Mun SY, Lim HM, Ahn H, et al. Thermal conductivities of epoxy composites comprising fibrous carbon and particulate silicon carbide fillers. Macromol Res. 2014;22(6):613–617.
  • Kim K, Kim M, Hwang Y, et al. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram Int. 2014;40(1):2047–2056.
  • Huang C, Qian X, Yang R. Thermal conductivity of polymers and polymer nanocomposites. Mat Sci Eng R. 2018;132:1–22.
  • Huxtable ST, Cahill DG, Shenogin S, et al. Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2003;2(11):731–734.
  • Shenogin S, Xue L, Ozisik R, et al. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Applied Phys. 2004;95(12):8136–8144.
  • Padmajan Sasikala S, Poulin P, Aymonier C. Prospects of supercritical fluids in realizing graphene‐based functional materials. Adv Mater. 2016;28(14):2663–2691.
  • Li L, Xu J, Li G, et al. Preparation of graphene nanosheets by shear-assisted supercritical CO2 exfoliation. Chem Eng J. 2016;284:78–84.
  • Gupta A, Chen G, Joshi P, et al. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006;6(12):2667–2673.
  • Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8(4):235–246.
  • Ferrari AC, Meyer JC, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18):187401.
  • Castriota M, Cazzanelli E, Pacilè D, et al. Spatial dependence of Raman frequencies in ordered and disordered monolayer graphene. Diam Relat Mater. 2010;19(5–6):608–613.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.