1,184
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The use of fibre reinforced polymer composites for construction of structural supercapacitors: a review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 942-986 | Received 31 Oct 2022, Accepted 08 Feb 2023, Published online: 02 Mar 2023

References

  • Libich J, Máca J, Vondrák J, et al. Supercapacitors: properties and applications. J Energy Storage. 2018;17:224–227.
  • Zhong C, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev. 2015;44(21):7484–7539.
  • Javaid A, et al. Multifunctional structural supercapacitors based on polyaniline deposited carbon fiber reinforced epoxy composites. J Energy Storage. 2021;33:102168.
  • Liu C, et al. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010;10(12):4863–4868.
  • Deka BK, et al. Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors. Chem Eng J. 2019;355:551–559.
  • Salkuti SR. Energy storage technologies for smart grid: a comprehensive review. Majlesi J Electr Eng. 2020;14(1):39–48.
  • Bae S-H, et al. Load-bearing supercapacitor based on bicontinuous PEO-b-P(S-co-DVB) structural electrolyte integrated with conductive nanowire-carbon fiber electrodes. Carbon. 2018;139:10–20.
  • Lee JH, et al. Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano. 2013;7(10):9366–9374.
  • Ladpli P, et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries. J Power Sources. 2019;414:517–529.
  • Reece R, Lekakou C, Smith PA. A high-performance structural supercapacitor. ACS Appl Mater Interfaces. 2020;12(23):25683–25692.
  • Berjoza D, Jurgena I. Influence of batteries weight on electric automobile performance. Eng for Rural Dev. 2017;16:1388–1394.
  • Adam TJ, et al. Multifunctional composites for future energy storage in aerospace structures. Energies. 2018;11(2).
  • Galos J, Best AS, Mouritz AP. Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads. Mater Des. 2020;185:108228.
  • Pattarakunnan K, Galos J, Das R, et al. Tensile properties of multifunctional composites embedded with lithium-ion polymer batteries. Compos Part A Appl Sci Manuf. 2020;136:105966.
  • Ladpli P, et al. Design of multifunctional structural batteries with health monitoring capabilities. in Proceedings of the 8th European workshop on structural health monitoring (EWSHM 2016). Bilbao Spain; 2016.
  • Pereira T, Guo Z, Nieh S, et al. Energy storage structural composites: a review. J Compos Mater. 2009;43(5):549–560.
  • Chan K-Y, Jia B, Lin H, et al. A critical review on multifunctional composites as structural capacitors for energy storage. Compos Struct. 2018;188:126–142.
  • Hudak NS, Schlichting AD, Eisenbeiser K. Structural supercapacitors with enhanced performance using carbon nanotubes and polyaniline. J Electrochem Soc. 2017;164(4):A691–A700.
  • Attar P, Galos J, Best AS, et al. Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries. Compos Struct. 2020;237:111937.
  • Xiao Y, et al. The effect of embedded devices on structural integrity of composite laminates. Compos Struct. 2016;153:21–29.
  • Pakdel E, et al. Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre wastes. ResouConserv Recycl. 2021;166:105340.
  • Xie S, et al. Recent advances toward achieving high-performance carbon-fiber materials for supercapacitors. ChemElectroChem. 2018;5(4):571–582.
  • Bigdeloo M, et al. Review on innovative sustainable nanomaterials to enhance the performance of supercapacitors. J Energy Storage. 2021;37:102474.
  • Sánchez-Romate XF, et al. A proof of concept of a structural supercapacitor made of graphene coated woven carbon fibers: EIS study and mechanical performance. Electrochim Acta. 2021;370:137746.
  • Muralidharan N, et al. Carbon nanotube reinforced structural composite supercapacitor. Sci Rep. 2018;8(1):17662.
  • Fang C, Zhang D. High multifunctional performance structural supercapacitor with Polyethylene oxide cement electrolyte and reduced graphene oxide@CuCo2O4 nanowires. Electrochim Acta. 2022;401:139491.
  • Chung DDL. A review of multifunctional polymer-matrix structural composites. Compos Part B Eng. 2019;160:644–660.
  • Asp LE, Greenhalgh ES. Structural power composites. Compos Sci Technol. 2014;101:41–61.
  • Xu J, Zhang D. Multifunctional structural supercapacitor based on graphene and geopolymer. Electrochim Acta. 2017;224:105–112.
  • Fang C, Zhang D. High areal energy density structural supercapacitor assembled with polymer cement electrolyte. Chem Eng J. 2021;426:130793.
  • Shirshova N, et al. Structural composite supercapacitors. Compos Part A Appl Sci Manuf. 2013;46:96–107.
  • Deka BK, et al. Recent development and challenges of multifunctional structural supercapacitors for automotive industries. Int J Energy Res. 2017;41(10):1397–1411.
  • Qian H, et al. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric. ACS Appl Mater Interfaces. 2013;5(13):6113–6122.
  • Artigas-Arnaudas J, et al. Surface modifications of carbon fiber electrodes for structural supercapacitors. Appl Compos Mater. 2021.
  • Gaikwad N, et al. Advanced polymer-based materials and mesoscale models to enhance the performance of multifunctional supercapacitors. J Energy Storage. 2023;58:106337.
  • Xu Y, et al. Structural supercapacitor composites: a review. Compos Sci Technol. 2021;204:108636.
  • Zhou H, et al. Structural composite energy storage devices — a review. Mater Today Energy. 2022;24:100924.
  • Pernice MF, et al. Mechanical, electrochemical and multifunctional performance of a CFRP/carbon aerogel structural supercapacitor and its corresponding monofunctional equivalents. Multifunct Mater. 2022;5(2):025002.
  • Pal B, Yang S, Ramesh S, Thangadurai V and Jose R. (2019). Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv., 1(10), 3807–3835. 10.1039/C9NA00374F
  • Deka BK, et al. Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid–polyester resin. Compos Part A Appl Sci Manuf. 2016;87:256–262.
  • Javaid A, Irfan M. Multifunctional structural supercapacitors based on graphene nanoplatelets/carbon aerogel composite coated carbon fiber electrodes. Mater Res Express. 2018;6(1):016310.
  • Javaid A, et al. Multifunctional structural supercapacitors for electrical energy storage applications. J Compos Mater. 2013;48(12):1409–1416.
  • Qi G, et al. The influence of fabrication parameters on the electrochemical performance of multifunctional structural supercapacitors. Multifunct Mater. 2021;4(3):034001.
  • Sha Z, et al. Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors. Compos Sci Technol. 2021;201:108568.
  • Ganguly A, et al. Multifunctional structural supercapacitor based on urea-activated graphene nanoflakes directly grown on carbon fiber electrodes. ACS Appl Energy Mater. 2020;3(5):4245–4254.
  • Qian H, et al. Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors. J Colloid Interface Sci. 2013;395:241–248.
  • Chung DDL. Development, design and applications of structural capacitors. Appl Energy. 2018;231:89–101.
  • Ding Y, et al. High-performance multifunctional structural supercapacitors based on in situ and ex situ activated-carbon-coated carbon fiber electrodes. American Chemical Society: Energy & Fuels; 2022.
  • Samsur R, et al. Fabrication of carbon nanotubes grown woven carbon fiber/epoxy composites and their electrical and mechanical properties. J Appl Phys. 2013;113(21):214903.
  • Nguyen S, et al. Mechanical and physical performance of carbon aerogel reinforced carbon fibre hierarchical composites. Compos Sci Technol. 2019;182:107720.
  • Subhani K, et al. Graphene aerogel modified carbon fiber reinforced composite structural supercapacitors. Compos Commun. 2021;24:100663.
  • Javaid A, et al. Improving the multifunctionality of structural supercapacitors by interleaving graphene nanoplatelets between carbon fibers and solid polymer electrolyte. J Compos Mater. 2018;53(10):1401–1409.
  • Wang B, et al. Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 2020;24:22–51.
  • Zhang R, Pang H. Application of graphene-metal/conductive polymer based composites in supercapacitors⋆. J Energy Storage. 2021;33:102037.
  • Shao Y, et al. Graphene-based materials for flexible supercapacitors. Chem Soc Rev. 2015;44(11):3639–3665.
  • Deka BK, et al. Multifunctional enhancement of woven carbon fiber/ZnO nanotube-based structural supercapacitor and polyester resin-domain solid-polymer electrolytes. Chem Eng J. 2017;325:672–680.
  • Artigas-Arnaudas J, et al. Effect of electrode surface treatment on carbon fiber based structural supercapacitors: electrochemical analysis, mechanical performance and proof-of-concept. J Energy Storage. 2023;59:106599.
  • Javaid A, et al. Carbon fibre-reinforced poly(ethylene glycol) diglycidyl ether based multifunctional structural supercapacitor composites for electrical energy storage applications. J Compos Mater. 2015;50(16):2155–2163.
  • Javaid A, et al. Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement. J Compos Mater. 2018;52(22):3085–3097.
  • Reece R, Lekakou C, Smith PA. A structural supercapacitor based on activated carbon fabric and a solid electrolyte. Mater Sci Technol. 2019;35(3):368–375.
  • Xu Y, et al. High-performance structural supercapacitors based on aligned discontinuous carbon fiber electrodes and solid polymer electrolytes. ACS Appl Mater Interfaces. 2021;13(10):11774–11782.
  • Deka BK, et al. Triboelectric nanogenerator-integrated structural supercapacitor with in situ MXene-dispersed N-doped Zn–Cu selenide nanostructured woven carbon fiber for energy harvesting and storage. Energy Storage Mater. 2021;43:402–410.
  • Hubert O, Todorovic N, Bismarck A. Towards separator-free structural composite supercapacitors. Compos Sci Technol. 2022;217:109126.
  • Dharmasiri B, et al. Flexible carbon fiber based structural supercapacitor composites with solvate ionic liquid-epoxy solid electrolyte. Chem Eng J. 2023;455:140778.
  • Ma G, et al. High performance solid-state supercapacitor with PVA–KOH–K3[Fe(CN)6] gel polymer as electrolyte and separator. J Power Sources. 2014;256:281–287.
  • Dong P, et al. A flexible solar cell/supercapacitor integrated energy device. Nano Energy. 2017;42:181–186.
  • Wang Y, et al. Development of structural supercapacitors with epoxy based adhesive polymer electrolyte. J Energy Storage. 2019;26:100968.
  • Li S, et al. Improved electrochemical and mechanical performance of epoxy-based electrolytes doped with mesoporous TiO2. Mater Chem Phys. 2018;205:23–28.
  • González A, et al. Review on supercapacitors: technologies and materials. Renew Sust Energ Rev. 2016;58:1189–1206.
  • Shirshova N, et al. Structural supercapacitor electrolytes based on bicontinuous ionic liquid–epoxy resin systems. ?J Mater Chem A. 2013;1(48):15300–15309.
  • Shirshova N, et al. Composition as a means to control morphology and properties of epoxy based dual-phase structural electrolytes. J Phys Chem C. 2014;118(49):28377–28387.
  • Pathak AK, et al. Relevance of graphene oxide as nanofiller for geometrical variation in unidirectional carbon fiber/epoxy composite. J Appl Polym Sci. 2021;138(38):50985.
  • Manoj Kumar S, Kamal S. Effect of carbon nanofillers on the mechanical and interfacial properties of epoxy based nanocomposites: a review. Polymer Sci Series A. 2019;61(4):439–460.
  • Huang F, et al. Creating ionic pathways in solid-state polymer electrolyte by using PVA-coated carbon nanofibers. Compos Sci Technol. 2021;207:108710.
  • Carlson T, et al. Structural capacitor materials made from carbon fibre epoxy composites. Compos Sci Technol. 2010;70(7):1135–1140.
  • Carlson T, Asp LE. Structural carbon fibre composite/PET capacitors – effects of dielectric separator thickness. Compos Part B Eng. 2013;49:16–21.
  • Kim KM, et al. Supercapacitive properties of activated carbon electrode in potassium-polyacrylate hydrogel electrolytes. J Appl Electrochem. 2016;46(5):567–573.
  • Sun J, et al. Mechanical and electrochemical performance of hybrid laminated structural composites with carbon fiber/ solid electrolyte supercapacitor interleaves. Compos Sci Technol. 2020;196:108234.
  • Mapleback B, et al. Composite structural supercapacitors: high-performance carbon nanotube supercapacitors through ionic liquid localisation. Nanomaterials. 2022;12:2558.
  • O’Brien DJ, Baechle DM, Wetzel ED. Design and performance of multifunctional structural composite capacitors. J Compos Mater. 2011;45(26):2797–2809.
  • Zhou H, et al. A novel embedded all-solid-state composite structural supercapacitor based on activated carbon fiber electrode and carbon fiber reinforced polymer matrix. Chemical Engineering Journal. 2023;454:140222.