172
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Immune Response and Mechanisms of IFN-γ in Administration for Keratomycosis

, , , , , , & show all
Pages 958-967 | Received 16 Nov 2017, Accepted 18 Jun 2018, Published online: 11 Oct 2018

REFERENCES

  • Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79(3):214–221. doi:10.1590/S0042-96862001000300009.
  • Xie L, Zhong W, Shi W, et al. Spectrum of fungal keratitis in north China. Ophthalmology. 2006;113(11):1943–1948. doi:10.1016/j.ophtha.2006.05.035.
  • Karsten E, S L W, Foster LJR. Diversity of Microbial Species Implicated in Keratitis: A Review[J]. Open Ophthalmol J. 2012;6(6):110–124. doi:10.2174/1874364101206010110.
  • Cheikhrouhou F, Makni F, Neji S, et al. Epidemiological profile of fungal keratitis in Sfax (Tunisia). J Mycol Med. 2014;24(4):308–312. doi:10.1016/j.mycmed.2014.06.047.
  • Gajjar DU, Pal AK, Ghodadra BK, et al. Microscopic evaluation, molecular identification, antifungal susceptibility, and clinical outcomes in fusarium, aspergillus and, dematiaceous keratitis. Biomed Res Int. 2013;2013(2013):605308. doi:10.1155/2013/605308.
  • Abou SM, Santos AR, R A O, et al. A novel rat contact lens model for Fusarium keratitis. Mol Vis. Dec 2013;19:2596–2605.
  • Sun Y, Chandra J, Mukherjee P, et al. A murine model of contact lens-associated fusarium keratitis. Invest Ophthalmol Vis Sci. 2010;51(3):1511–1519. doi:10.1167/iovs.09-4237.
  • Hu J, Wang Y, Xie L. Potential role of macrophages in experimental keratomycosis. Investigative Invest Ophthalmol Vis Sci. 2009;50(5):2087–2094. doi:10.1167/iovs.07-1237.
  • Wu C, Xue Y, Wang P, et al. IFN-γ primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b. J Immunol. 2014;193(6):3036–3044. doi:10.4049/jimmunol.1302379.
  • Wu TG, Wilhelmus KR, Mitchell BM. Experimental keratomycosis in a mouse model. Invest Ophthalmol Vis Sci. Feb 2003;44(1):210–216.
  • Chowdhary A, Singh K. Spectrum of fungal keratitis in North India. Cornea. 2005;24:8–15.
  • Ando N, Takatori K. Fungal flora of the conjunctival sac. Am J Ophthalmol. 1982;94:67–74.
  • Siddiqui AA, Brouwer AE, Wuthiekanun V, et al. IFN-γ at the site of infection determines rate of clearance of infection in cryptococcal meningitis. J Immunol. 2005;174(3):1746–1750. doi:10.4049/jimmunol.174.3.1746.
  • Rivera J, Mukherjee J, Weiss LM, et al. Antibody efficacy in murine pulmonary Cryptococcus neoformans infection: a role for nitric oxide. J Immunol. 2002;168(7):3419–3427. doi:10.4049/jimmunol.168.7.3419.
  • C E D, M S G, Leentjens J, et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. Bmc Infect Dis. 2014;14(1):166. doi:10.1186/1471-2334-14-166.
  • Hino R, Shimauchi T, Tokura Y. Treatment with IFN-γ increases serum levels of Th1 chemokines and decreases those of Th2 chemokines in patients with mycosis fungoides. J Dermatol Sci. 2005;38(3):189–195. doi:10.1016/j.jdermsci.2005.01.005.
  • Jaimeramirez AC, Mundybosse BL, Kondadasula SV, et al. IL-12 Enhances the Antitumor Actions of Trastuzumab via NK Cell IFN-γ Production. J Immunol. 2011;186(6):3401. doi:10.4049/jimmunol.1000328.
  • Kurup VP. Interaction of Aspergillus fumigatus spores and pulmonary alveolar macrophages of rabbits. Immunobiology. Feb 1984;166(1):53–61.
  • Hu J, Hu Y, Chen S, et al. Roleofactivated macrophages in experimental Fusarium solani keratitis. Experimental Eye Research. 2014;129:57–65.
  • Rocco NM, Carmen JC, Klein BS. Blastomyces dermatitidis yeast cells inhibit nitric oxide production by alveolar macrophage inducible nitric oxide synthase. Infect Immun. 2011;79(6):2385–2395. doi:10.1128/IAI.01249-10.
  • Collette JR, Zhou H, Lorenz MC. Candida albicans suppresses nitric oxide generation from Macrophages via a secreted molecule. Plos One. 2014;9(4):e96203. doi:10.1371/journal.pone.0096203.
  • Bodhankar S, Sun X, Woolard MD, et al. IFN-γ and IL-4 have contrasting effects on immunopathology and development of protective adaptive immunity against mycoplasma respiratory disease. J Infect Dis. 2010;202(1):39–43. doi:10.1086/653121.
  • Ruschpler P, Stiehl P. Shift in Th1 (IL-2 and IFN-gamma) and Th2 (IL-10 and IL-4) cytokine mRNA balance within two new histological main-types of rheumatoid-arthritis (RA). Cell Mol Immunol. May 2002;48(3):285–293.
  • Zhang H, Chen H, Niu J, et al. Role of adaptive immunity in the pathogenesis of Candida albicans keratitis. Invest Ophthalmol Vis Sci. 2009;50(6):2653–2659. doi:10.1167/iovs.08-3104.
  • Shimauchi T, K S, Nishio D, et al. Alterations of serum Th1 and Th2 chemokines by combination therapy of interferon-gamma and narrowband UVB in patients with mycosis fungoides. J Dermatol Sci. 2008;50(3):217–221. doi:10.1016/j.jdermsci.2007.12.004.
  • Lue H, Dewor M, Leng L, et al. Activation of the JNK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on CXCR4 and CD74. Cell Signal. 2011;23(1):135–144. doi:10.1016/j.cellsig.2010.08.013.
  • Tirotta E, Ransohoff RM, Lane TE. CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-γ/CXCL10-mediated apoptosis. Glia. 2011;59(10):1518–1528. doi:10.1002/glia.21195.
  • D T M, Bélanger B, Desautels F, et al. MIF: a down-regulator of early T cell-dependent IFN-γ responses in Plasmodium chabaudi adami (DK) infected mice. J Immunol. 2011;186(11):6271–6279. doi:10.1128/iai.68.3.6271-6279.2011.
  • Das R, Moss JE, Robinson E, et al. Role of macrophage migration inhibitory factor in the Th2 immune response to epicutaneous sensitization. J Clin Immunol. 2011;31(4):666–680. doi:10.1007/s10875-011-9541-7.
  • Shweash M, Mcgachy HA, Schroeder J, et al. Leishmania mexicana promastigotes inhibit macrophage IL-12 production via TLR-4 dependent COX-2, iNOS and arginase-1 expression. Mol Immunol. 2011;48(15–16):1800–1806. doi:10.1016/j.molimm.2011.05.013.
  • Meier A, C J K, Nikolaus T, et al. Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol. 2003;5(8):561–570. doi:10.1046/j.1462-5822.2003.00301.x.
  • Orlichenko LS, Behari J, Yeh TH, et al. Transcriptional regulation of CXC-ELR chemokines KC and MIP-2 in mouse pancreatic acini. Am J Physiol Gastrointest Liver Physiol. 2010;299(4):g867. doi:10.1152/ajpgi.00177.2010.
  • Cai S, Batra S, Lira SA, et al. CXCL1 regulates pulmonary host defense to Klebsiella Infection via CXCL2, CXCL5, NF-kappaB, and MAPKs. J Immunol. 2010;185(10):6214–6225. doi:10.4049/jimmunol.0903843.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.