181
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Association Study of ARMC9 Gene Variants with Vogt-Koyanagi-Harada Disease in Japanese Patients

, , , , , , , , , , , , , , ORCID Icon, , , , , , , & show all
Pages 699-705 | Received 10 Jul 2018, Accepted 10 Sep 2018, Published online: 05 Nov 2018

REFERENCES

  • Damico FM, Kiss S, Young LH. Vogt-Koyanagi-Harada disease. Semin Ophthalmol. 2005;20:183–190. doi:10.1080/08820530500232126.
  • Ohguro N, Sonoda KH, Takeuchi M, Matsumura M, Mochizuki M. The 2009 prospective multi-center epidemiologic survey of uveitis in Japan. Jpn J Ophthalmol. 2012;56:432–435.
  • Islam SM, Numaga J, Fujino Y, et al. HLA class II genes in Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci. 1994;35:3890–3896.
  • Read RW, Holland GN, Rao NA, et al. Revised diagnostic criteria for Vogt-Koyanagi-Harada disease: report of an international committee on nomenclature. Am J Ophthalmol. 2001;131:647–652.
  • Shindo Y, Ohno S, Yamamoto T, Nakamura S, Inoko H. Complete association of the HLA-DRB1*04 and -DQB1*04 alleles with Vogt-Koyanagi-Harada’s disease. Hum Immunol. 1994;39:169–176.
  • Shi T, Lv W, Zhang L, Chen J, Chen H. Association of HLA-DR4/HLA-DRB1*04 with Vogt-Koyanagi-Harada disease: a systematic review and meta-analysis. Sci Rep. 2014;4:6887. doi:10.1038/srep06887.
  • Ng JY, Luk FO, Lai TY, Pang CP. Influence of molecular genetics in Vogt-Koyanagi-Harada disease. J Ophthalmic Inflamm Infect. 2014;4:20. doi:10.1186/s12348-014-0020-1.
  • Horie Y, Takemoto Y, Miyazaki A, et al. Tyrosinase gene family and Vogt-Koyanagi-Harada disease in Japanese patients. Mol Vis. 2006;12:1601–1605.
  • Du L, Kijlstra A, Yang P. Vogt-Koyanagi-Harada disease: novel insights into pathophysiology, diagnosis and treatment. Prog Retin Eye Res. 2016;52:84–111. doi:10.1016/j.preteyeres.2016.02.002.
  • Kiniwa Y, Fujita T, Akada M, et al. Tumor antigens isolated from a patient with vitiligo and T-cell-infiltrated melanoma. Cancer Res. 2001;61:7900–7907.
  • Otani S, Sakurai T, Yamamoto K, et al. Frequent immune response to a melanocyte specific protein KU-MEL-1 in patients with Vogt-Koyanagi-Harada disease. Br J Ophthalmol. 2006;90:773–777. doi:10.1136/bjo.2005.086520.
  • Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11:274–286. doi:10.1038/tpj.2010.28.
  • Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12:683–691. doi:10.1038/nrg3051.
  • Chasman D, Adams RM. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation. J Mol Biol. 2001;307:683–706. doi:10.1006/jmbi.2001.4510.
  • Yamaguchi-Kabata Y, Nakazono K, Takahashi A, et al. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am J Hum Genet. 2008;83:445–456. doi:10.1016/j.ajhg.2008.08.019.
  • Nakaoka H, Mitsunaga S, Hosomichi K, et al. Detection of ancestry informative HLA alleles confirms the admixed origins of Japanese population. PLoS One. 2013;8:e60793. doi:10.1371/journal.pone.0060793.
  • Li Y, Willer CJ, Sanna S, Abecasis G. Genotype imputation. Annu Rev Genomics Hum Genet. 2009;10:387–406. doi:10.1146/annurev.genom.9.081307.164242.
  • Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol. 2010;34:816–834. doi:10.1002/gepi.20533.
  • Roshyara NR, Scholz M. Impact of genetic similarity on imputation accuracy. BMC Genet. 2015;16:90. doi:10.1186/1471-2156-16-S2-S4.
  • Chou WC, Zheng HF, Cheng CH, et al. A combined reference panel from the 1000 Genomes and UK10K projects improved rare variant imputation in European and Chinese samples. Sci Rep. 2016;6:39313. doi:10.1038/srep39313.
  • 1000 Genomes Project Consortium; Abecasis GR, Auton A, Brooks LD, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.
  • GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–585. doi:10.1038/ng.2653.
  • Pruim RJ, Welch RP, Sanna S, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–2337. doi:10.1093/bioinformatics/btq419.
  • Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265. doi:10.1093/bioinformatics/bth457.
  • Hjeij R, Lindstrand A, Francis R, et al. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am J Hum Genet. 2013;93:357–367. doi:10.1016/j.ajhg.2013.06.009.
  • Onoufriadis A, Shoemark A, Munye MM, et al. Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. J Med Genet. 2014;51:61–67. doi:10.1136/jmedgenet-2013-101938.
  • Assié G, Libé R, Espiard S, et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med. 2013;369:2105–2114. doi:10.1056/NEJMoa1304603.
  • Alencar GA, Lerario AM, Nishi MY, et al. ARMC5 mutations are a frequent cause of primary macronodular adrenal hyperplasia. J Clin Endocrinol Metab. 2014;99:E1501–9. doi:10.1210/jc.2013-4237.
  • Van De Weghe JC, Rusterholz TDS, Latour B, et al. Mutations in ARMC9, which encodes a basal body protein, cause joubert syndrome in humans and ciliopathy phenotypes in Zebrafish. Am J Hum Genet. 2017;101:23–36. doi:10.1016/j.ajhg.2017.05.010.
  • Kar A, Phadke SR, Das Bhowmik A, Dalal A. Whole exome sequencing reveals a mutation in ARMC9 as a cause of mental retardation, ptosis, and polydactyly. Am J Med Genet A. 2018;176:34–40. doi:10.1002/ajmg.a.38537.
  • Tewari R, Bailes E, Bunting KA, Coates JC. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol. 2010;20:470–481. doi:10.1016/j.tcb.2010.05.003.
  • Huber AH, Nelson WJ, Weis WI. Three-dimensional structure of the armadillo repeat region of β-catenin. Cell. 1997;90:871–882.
  • Xue G, Romano E, Massi D, Mandalà M. Wnt/β-catenin signaling in melanoma: preclinical rationale and novel therapeutic insights. Cancer Treat Rev. 2016;49:1–12. doi:10.1016/j.ctrv.2016.06.009.
  • Morin PJ. β-catenin signaling and cancer. Bioessays. 1999;21:1021–1030. doi:10.1002/(SICI)1521-1878(199912)22:1<1021::AID-BIES6>3.0.CO;2-P.
  • Damalas A, Ben-Ze’ev A, Simcha I, et al. Excess β-catenin promotes accumulation of transcriptionally active p53. Embo J. 1999;18:3054–3063. doi:10.1093/emboj/18.11.3054.
  • Incassati A, Chandramouli A, Eelkema R, Cowin P. Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Res. 2010;12:213. doi:10.1186/bcr2722.
  • Abad S, Wieërs G, Colau D, et al. Absence of recognition of common melanocytic antigens by T cells isolated from the cerebrospinal fluid of a Vogt-Koyanagi-Harada patient. Mol Vis. 2014;20:956–969.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.