199
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Klotho Levels are Decreased and Associated with Enhanced Oxidative Stress and Inflammation in the Aqueous Humor in Patients with Exudative Age-related Macular Degeneration

, MD, PhD, , MD, , , MD, PhD & , MD, PhD
Pages 630-637 | Received 17 Jan 2020, Accepted 21 Sep 2020, Published online: 13 Oct 2020

References

  • Hernandez-Zimbron LF, Zamora-Alvarado R, Ochoa-De la Paz L, et al. Age-related macular degeneration: new paradigms for treatment and management of amd. Oxid Med Cell Longev. 2018;2018:8374647. doi:10.1155/2018/8374647.
  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–116. doi:10.1016/S2214-109X(13)70145-1.
  • Age-Related Eye Disease Study Research G. Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: age-related eye disease study report number 3. Ophthalmology. 2000;107:2224–2232.
  • Ammar MJ, Hsu J, Chiang A, Ho AC, Regillo CD. Age-related macular degeneration therapy: A review. Curr Opin Ophthalmol. 2020;31(3):215–221. doi:10.1097/ICU.0000000000000657.
  • Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet. 2012;379(9827):1728–1738. doi:10.1016/S0140-6736(12)60282-7.
  • Ayoub T, Patel N. Age-related macular degeneration. J R Soc Med. 2009;102(2):56–61. doi:10.1258/jrsm.2009.080298.
  • Rivera JC, Dabouz R, Noueihed B, Omri S, Tahiri H, Chemtob S. Ischemic retinopathies: oxidative stress and inflammation. Oxid Med Cell Longev. 2017;2017:3940241. doi:10.1155/2017/3940241.
  • George AK, Singh M, Homme RP, Majumder A, Sandhu HS, Tyagi SC. A hypothesis for treating inflammation and oxidative stress with hydrogen sulfide during age-related macular degeneration. Int J Ophthalmol. 2018;11:881–887.
  • Litwinska Z, Sobus A, Luczkowska K, et al. The interplay between systemic inflammatory factors and micrornas in age-related macular degeneration. Front Aging Neurosci. 2019;11:286. doi:10.3389/fnagi.2019.00286.
  • Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci. 2016;73:1765–1786.
  • Agrawal R, Balne PK, Wei X, et al. Cytokine profiling in patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2019;60(1):376–382. doi:10.1167/iovs.18-24387.
  • Lau LI, Liu CJ, Wei YH. Increase of 8-hydroxy-2ʹ-deoxyguanosine in aqueous humor of patients with exudative age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51(11):5486–5490. doi:10.1167/iovs.10-5663.
  • Colak E, Zoric L, Radosavljevic A, Ignjatovic S. The association of serum iron-binding proteins and the antioxidant parameter levels in age-related macular degeneration. Curr Eye Res. 2018;43(5):659–665. doi:10.1080/02713683.2018.1437452.
  • Age-Related Eye Disease Study. 2 Research G. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the age-related eye disease study 2 (areds2) randomized clinical trial. JAMA. 2013;309(19):2005–2015. doi:10.1001/jama.2013.4997.
  • Age-Related Eye Disease Study Research G. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins c and e, beta carotene, and zinc for age-related macular degeneration and vision loss: areds report no. 8. Arch Ophthalmol. 2001;119(10):1417–1436. doi:10.1001/archopht.119.10.1417.
  • Wang Y, Sun Z. Current understanding of klotho. Ageing Res Rev. 2009;8(1):43–51. doi:10.1016/j.arr.2008.10.002.
  • Moos WH, Faller DV, Glavas IP, et al. Klotho pathways, myelination disorders, neurodegenerative diseases, and epigenetic drugs. Biores Open Access. 2020;9(1):94–105. doi:10.1089/biores.2020.0004.
  • Gao W, Yuan C, Zhang J, et al. Klotho expression is reduced in copd airway epithelial cells: effects on inflammation and oxidant injury. Clin Sci. 2015;129(12):1011–1023. doi:10.1042/CS20150273.
  • Kimura T, Shiizaki K, Akimoto T, et al. The impact of preserved klotho gene expression on antioxidative stress activity in healthy kidney. Am J Physiol Renal Physiol. 2018;315:F345–F352.
  • Oh HJ, Oh H, Nam BY, et al. The protective effect of klotho against contrast-associated acute kidney injury via the antioxidative effect. Am J Physiol Renal Physiol. 2019;317(4):F881–F889. doi:10.1152/ajprenal.00297.2018.
  • Ravikumar P, Li L, Ye J, et al. Alphaklotho deficiency in acute kidney injury contributes to lung damage. J Appl Physiol. 2016;120(7):723–732. doi:10.1152/japplphysiol.00792.2015.
  • Slominski B, Ryba-Stanislawowska M, Skrzypkowska M, Mysliwska J, Mysliwiec M. The kl-vs polymorphism of klotho gene is protective against retinopathy incidence in patients with type 1 diabetes. Biochim Biophys Acta Mol Basis Dis. 2018;1864(3):758–763. doi:10.1016/j.bbadis.2017.12.015.
  • Li X, Li Z, Li B, Zhu X, Lai X. Klotho improves diabetic cardiomyopathy by suppressing the nlrp3 inflammasome pathway. Life Sci. 2019;234:116773. doi:10.1016/j.lfs.2019.116773.
  • Takenaka T, Kobori H, Miyazaki T, et al. Klotho protein supplementation reduces blood pressure and renal hypertrophy in db/db mice, a model of type 2 diabetes. Acta Physiol (Oxf). 2019;225(2):e13190. doi:10.1111/apha.13190.
  • Yamamoto M, Clark JD, Pastor JV, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem. 2005;280(45):38029–38034. doi:10.1074/jbc.M509039200.
  • Dalton GD, Xie J, An SW, Huang CL. New insights into the mechanism of action of soluble klotho. Front Endocrinol (Lausanne). 2017;8:323.
  • Imura A, Iwano A, Tohyama O, et al. Secreted klotho protein in sera and csf: implication for post-translational cleavage in release of klotho protein from cell membrane. FEBS Lett. 2004;565(1–3):143–147. doi:10.1016/j.febslet.2004.03.090.
  • Ahoor MH, Ghorbanihaghjo A, Sorkhabi R, Kiavar A. Klotho and endothelin-1 in pseudoexfoliation syndrome and glaucoma. J Glaucoma. 2016;25(12):919–922. doi:10.1097/IJG.0000000000000553.
  • Reish NJ, Maltare A, McKeown AS, et al. The age-regulating protein klotho is vital to sustain retinal function. Invest Ophthalmol Vis Sci. 2013;54(10):6675–6685. doi:10.1167/iovs.13-12550.
  • Hollyfield JG, Bonilha VL, Rayborn ME, et al. Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med. 2008;14(2):194–198. doi:10.1038/nm1709.
  • Nagineni CN, Kommineni VK, William A, Detrick B, Hooks JJ. Regulation of vegf expression in human retinal cells by cytokines: implications for the role of inflammation in age-related macular degeneration. J Cell Physiol. 2012;227(1):116–126. doi:10.1002/jcp.22708.
  • Kannan R, Zhang N, Sreekumar PG, et al. Stimulation of apical and basolateral vegf-a and vegf-c secretion by oxidative stress in polarized retinal pigment epithelial cells. Mol Vis. 2006;12:1649–1659.
  • Chung EJ, Efstathiou NE, Konstantinou EK, et al. Aicar suppresses tnf-alpha-induced complement factor b in rpe cells. Sci Rep. 2017;7(1):17651. doi:10.1038/s41598-017-17744-w.
  • Wang J, Ohno-Matsui K, Yoshida T, et al. Amyloid-beta up-regulates complement factor b in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: another mechanism of complement activation in age-related macular degeneration. J Cell Physiol. 2009;220(1):119–128. doi:10.1002/jcp.21742.
  • Grossniklaus HE, Ling JX, Wallace TM, et al. Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis. 2002;8:119–126.
  • Ohki Y, Heissig B, Sato Y, et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. Faseb J. 2005;19(14):2005–2007. doi:10.1096/fj.04-3496fje.
  • Izumi-Nagai K, Nagai N, Ozawa Y, et al. Interleukin-6 receptor-mediated activation of signal transducer and activator of transcription-3 (stat3) promotes choroidal neovascularization. Am J Pathol. 2007;170(6):2149–2158. doi:10.2353/ajpath.2007.061018.
  • Matsumura N, Kamei M, Tsujikawa M, Suzuki M, Xie P, Nishida K. Low-dose lipopolysaccharide pretreatment suppresses choroidal neovascularization via il-10 induction. PLoS One. 2012;7(7):e39890. doi:10.1371/journal.pone.0039890.
  • Guo Y, Zhuang X, Huang Z, et al. Klotho protects the heart from hyperglycemia-induced injury by inactivating ros and nf-kappab-mediated inflammation both in vitro and in vivo. Biochim Biophys Acta Mol Basis Dis. 2018;1864:238–251.
  • Maltese G, PM P, Rizzo B, et al. The anti-ageing hormone klotho induces nrf2-mediated antioxidant defences in human aortic smooth muscle cells. J Cell Mol Med. 2017;21(3):621–627. doi:10.1111/jcmm.12996.
  • Olejnik A, Franczak A, Krzywonos-Zawadzka A, Kaluzna-Oleksy M, Bil-Lula I. The biological role of klotho protein in the development of cardiovascular diseases. Biomed Res Int. 2018;2018:5171945. doi:10.1155/2018/5171945.
  • Kokkinaki M, Ahern G, Golestaneh N. Klotho regulates retinal pigment epithelia functions through trpv5 ca2+channels; implication in age-related macular degeneration. Mol Biol Cell. 2011;22(Abstract).
  • Kokkinaki M, Abu-Asab M, Gunawardena N, et al. Klotho regulates retinal pigment epithelial functions and protects against oxidative stress. J Neurosci. 2013;33(41):16346–16359. doi:10.1523/JNEUROSCI.0402-13.2013.
  • Hsia CCW, Ravikumar P, Ye J. Acute lung injury complicating acute kidney injury: A model of endogenous alphaklotho deficiency and distant organ dysfunction. Bone. 2017;100:100–109. doi:10.1016/j.bone.2017.03.047.
  • Martin-Nunez E, Donate-Correa J, Lopez-Castillo A, et al. Soluble levels and endogenous vascular gene expression of klotho are related to inflammation in human atherosclerotic disease. Clin Sci (Lond). 2017;131(21):2601–2609. doi:10.1042/CS20171242.
  • Yang S, Zhao J, Sun X. Resistance to anti-vegf therapy in neovascular age-related macular degeneration: A comprehensive review. Drug Des Devel Ther. 2016;10:1857–1867.
  • McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA. Relationship between rpe and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50(10):4982–4991. doi:10.1167/iovs.09-3639.
  • Frank RN, Amin RH, Eliott D, Puklin JE, Abrams GW. Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol. 1996;122(3):393–403. doi:10.1016/S0002-9394(14)72066-5.
  • Grossniklaus HE, Martinez JA, Brown VB, et al. Immunohistochemical and histochemical properties of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol. 1992;114(4):464–472. doi:10.1016/S0002-9394(14)71859-8.
  • Kvanta A, Algvere PV, Berglin L, Seregard S. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci. 1996;37:1929–1934.
  • Funk M, Karl D, Georgopoulos M, et al. Neovascular age-related macular degeneration: intraocular cytokines and growth factors and the influence of therapy with ranibizumab. Ophthalmology. 2009;116(12):2393–2399. doi:10.1016/j.ophtha.2009.05.039.
  • Tong JP, Chan WM, Liu DT, et al. Aqueous humor levels of vascular endothelial growth factor and pigment epithelium-derived factor in polypoidal choroidal vasculopathy and choroidal neovascularization. Am J Ophthalmol. 2006;141(3):456–462. doi:10.1016/j.ajo.2005.10.012.
  • Motohashi R, Noma H, Yasuda K, Kotake O, Goto H, Shimura M. Dynamics of soluble vascular endothelial growth factor receptors and their ligands in aqueous humour during ranibizumab for age-related macular degeneration. J Inflamm (Lond). 2018;15(1):26. doi:10.1186/s12950-018-0203-x.
  • Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–1027. doi:10.1200/JCO.2005.06.081.
  • Kuroki M, Voest EE, Amano S, et al. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest. 1996;98(7):1667–1675. doi:10.1172/JCI118962.
  • Mencke R, Hillebrands JL. consortium N. The role of the anti-ageing protein klotho in vascular physiology and pathophysiology. Ageing Res Rev. 2017;35:124–146. doi:10.1016/j.arr.2016.09.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.