544
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Glutathione Trisulfide Prevents Lipopolysaccharide-induced Inflammatory Gene Expression in Retinal Pigment Epithelial Cells

, PhDORCID Icon, , MD, , MD, , MD, PhD, , MD, PhD, , PhD, , PhD, , MD, PhD, , MD, PhD & , MD, PhD show all
Pages 789-800 | Received 13 May 2020, Accepted 30 Sep 2020, Published online: 20 Nov 2020

References

  • Holtkamp GM, Kijlstra A, Peek R, De Vos AF. Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res. 2001. doi:10.1016/S1350-9462(00)00017-3.
  • Van Der Meer JWM, Helle M, Aarden L. Comparison of the effects of recombinant interleukin 6 and recombinant interleukin 1 on nonspecific resistance to infection. Eur J Immunol. 1989;19(2):413–416. doi:10.1002/eji.1830190229.
  • Neta R, Vogel SN, Sipe JD, Wong GG, Nordan RP. Comparison of in vivo effects of human recombinant IL 1 and human recombinant IL 6 in mice. Lymphokine Res. 1988;7(4):403–412. http://www.ncbi.nlm.nih.gov/pubmed/3145371. Accessed. 2020
  • Nagineni CN, Detrick B, Hooks JJ. Synergistic effects of gamma interferon on inflammatory mediators that induce interleukin-6 gene expression and secretion by human retinal pigment epithelial cells. Clin Diagn Lab Immunol. 1994;1(5):569–577. doi:10.1128/cdli.1.5.569-577.1994.
  • Cheng S-C, Huang W-C, Pang J-HS, Wu Y-H, Cheng C-Y. Quercetin inhibits the production of IL-1β-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. Int J Mol Sci Artic J Mol Sci. 2019;20:2957. doi:10.3390/ijms20122957.
  • Elner VM, Scales W, Elner SG, Danforth J, Kunkel SL, Strieter RM. Interleukin-6 (IL-6) gene expression and secretion by cytokine-stimulated human retinal pigment epithelial cells. Exp Eye Res. 1992;54(3):361–368. doi:10.1016/0014-4835(92)90048-W.
  • Matsushima K, Larsen CG, DuBois GC, Oppenheim JJ. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 1989;169(4):1485–1490. doi:10.1084/jem.169.4.1485.
  • Taub DD, Proost P, Murphy WJ, et al. Monocyte chemotactic protein-1 (MCP-1), −2, and −3 are chemotactic for human T lymphocytes. J Clin Invest. 1995;95(3):1370–1376.doi:10.1172/JCI117788.
  • Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017. doi:10.1016/j.preteyeres.2017.03.002.
  • Telegina DV, Kozhevnikova OS, Kolosova NG. Changes in retinal glial cells with age and during development of age-related macular degeneration. Biochem. 2018;83(9):1009–1017. doi:10.1134/S000629791809002X.
  • Kolb H, Ralph N, Eduardo F. The Organization of the Retina and Visual System. Salt Lake City, Utah: University of Utah Health Sciences Center; 1995.
  • Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–881. doi:10.1152/physrev.00021.2004.
  • Lefevere E, Toft-Kehler AK, Vohra R, Kolko M, Moons L, Van Hove I. Mitochondrial dysfunction underlying outer retinal diseases. Mitochondrion. 2017. doi:10.1016/j.mito.2017.03.006.
  • Miceli MV, Liles MR, Newsome DA. Evaluation of oxidative processes in human pigment epithelial cells associated with retinal outer segment phagocytosis. Exp Cell Res. 1994;214(1):242–249. doi:10.1006/excr.1994.1254.
  • Sachdeva MM, Cano M, Handa JT. Nrf2 signaling is impaired in the aging RPE given an oxidative insult. Exp Eye Res. 2014. doi:10.1016/j.exer.2013.10.024.
  • Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999 Oct;31(4):273–300. doi:10.1080/10715769900300851.
  • Iciek M, Wlodek L. Biosynthesis and biological properties of compounds containing highly reactive, reduced sulfane sulfur. Pol J Pharmacol. 2001;53(3):215–225.
  • Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA. 2014. doi:10.1073/pnas.1321232111.
  • Kunikata H, Ida T, Sato K, et al. Metabolomic profiling of reactive persulfides and polysulfides in the aqueous and vitreous humors. Sci Rep. 2017;7. doi:10.1038/srep41984.
  • Numakura T, Sugiura H, Akaike T, et al. Production of reactive persulfide species in chronic obstructive pulmonary disease. Thorax. 2017;72(12):1074–1083.doi:10.1136/thoraxjnl-2016-209359.
  • Akaike T, Ida T, Wei F, et al. Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat Commun. 2017. doi:10.1038/s41467-017-01311-y.
  • Khan S, Fujii S, Matsunaga T, et al. Reactive persulfides from salmonella typhimurium downregulate autophagy-mediated innate immunity in macrophages by inhibiting electrophilic signaling. Cell Chem Biol. 2018. doi:10.1016/j.chembiol.2018.08.007.
  • Shibuya N, Tanaka M, Yoshida M, et al. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal. 2009;11(4):703–714. doi: 10.1089/ars.2008.2253
  • Kimura Y, Koike S, Shibuya N, Lefer D, Ogasawara Y, Kimura H. 3-Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-SSH and GSSH) together with signaling molecules H2S2, H2S3 and H2S. Sci Rep. 2017;7(1):1–14. doi:10.1038/s41598-017-11004-7.
  • Shoji T, Hayashi M, Sumi C, et al. Pharmacological polysulfide suppresses glucose-stimulated insulin secretion in an ATP-sensitive potassium channel-dependent manner. Sci Rep. 2019;9(1):1–12.doi:10.1038/s41598-019-55848-7.
  • West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011;11(6):389–402. doi:10.1038/nri2975.
  • Pawate S, Shen Q, Fan F, Bhat NR. Redox regulation of glial inflammatory response to lipopolysaccharide and interferonγ. J Neurosci Res. 2004;77(4):540–551. doi:10.1002/jnr.20180.
  • Torres M, Forman HJ. Redox signaling and the MAP kinase pathways. In: Pompella A, Bánhegyi G, Wellman‐Rousseau A, eds. BioFactors. Vol. 17. Amsterdam, The Netherlands: IOS Press; 2003:287–296. doi:10.1002/biof.5520170128.
  • Li Q, Engelhardt JF. Interleukin-1β induction of NFκB is partially regulated by H2O2-mediated activation of NFκB-inducing kinase. J Biol Chem. 2006;281(3):1495–1505. doi:10.1074/jbc.M511153200.
  • Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of reactive oxygen species in toll-like receptor 4-dependent activation of NF-κB. J Immunol. 2004;172(4):2522–2529. doi:10.4049/jimmunol.172.4.2522.
  • Gloire G, Legrand-Poels S, Piette J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006. doi:10.1016/j.bcp.2006.04.011.
  • Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–226. doi:10.1038/nature09663.
  • Bulua AC, Simon A, Maddipati R, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011;208(3):519–533.doi:10.1084/jem.20102049.
  • Fernandez-Godino R, Garland DL, Pierce EA. Isolation, culture and characterization of primary mouse RPE cells. Nat Protoc. 2016;11(7):1206–1218. doi:10.1038/nprot.2016.065.
  • Girol AP, Mimura KKO, Drewes CC, et al. Anti-inflammatory mechanisms of the annexin A1 protein and its mimetic peptide Ac2-26 in models of ocular inflammation in vivo and in vitro. J Immunol. 2013;190(11):5689–5701.doi:10.4049/jimmunol.1202030.
  • Zanon C de F, Sonehara NM, Girol AP, Gil CD, Oliani SM. Protective effects of the galectin-1. protein on in vivo and in vitro models of ocular inflammation. Mol Vis. 2015;21:1036–1050.
  • Mateos MV, Kamerbeek CB, Giusto NM, Salvador GA. The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium. Int J Biochem Cell Biol. 2014;55:119–128. doi:10.1016/j.biocel.2014.08.016.
  • Kauppinen A, Niskanen H, Suuronen T, Kinnunen K, Salminen A, Kaarniranta K. Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells-Implications for age-related macular degeneration (AMD). Immunol Lett. 2012;147(1–2):29–33. doi:10.1016/j.imlet.2012.05.005.
  • Arjamaa O, Aaltonen V, Piippo N, et al. Hypoxia and inflammation in the release of VEGF and interleukins from human retinal pigment epithelial cells. Graefe’s Arch Clin Exp Ophthalmol. 2017;255(9):1757–1762.doi:10.1007/s00417-017-3711-0.
  • Elner VM, Elner SG, Bian ZM, Kindezelskii AL, Yoshida A, Petty HR. RPE CD14 immunohistochemical, genetic, and functional expression. Exp Eye Res. 2003;76(3):321–331. doi:10.1016/S0014-4835(02)00310-X.
  • Yamawaki T, Ito E, Mukai A, et al. The ingenious interactions between macrophages and functionally plastic retinal pigment epithelium cells. Investig Ophthalmol Vis Sci. 2016. doi:10.1167/iovs.16-20604.
  • Tawarayama H, Yamada H, Amin R, et al. Draxin regulates hippocampal neurogenesis in the postnatal dentate gyrus by inhibiting DCC-induced apoptosis. Sci Rep. 2018;8:1. doi:10.1038/s41598-018-19346-6.
  • Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on toll- like receptor 4. J Exp Med. 1999;189(11):1777–1782.doi:10.1084/jem.189.11.1777.
  • Hamel CP, Tsilou E, Pfeffer BA, Hooks JJ, Detrick B, Redmond TM. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem. 1993;268(21):5751–15757.
  • Paulsen CE, Carroll KS. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev. 2013;113(7):4633–4679. doi:10.1021/cr300163e.
  • TLR S, Lethal M, Shock E, et al. Enhanced cellular polysulfides negatively regulate article enhanced cellular polysulfides negatively regulate TLR4 signaling and mitigate lethal endotoxin shock. Cell Chem Biol. 2019;1–13. doi:10.1016/j.chembiol.2019.02.003.
  • Kaminska B MAPK signalling pathways as molecular targets for anti-inflammatory therapy - From molecular mechanisms to therapeutic benefits. In: Biochimica et Biophysica Acta - Proteins and Proteomics. Vol 1754.; 2005:253–262. doi:10.1016/j.bbapap.2005.08.017
  • Arthur JSC, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13(9):679–692. doi:10.1038/nri3495.
  • Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13(2):85–94. doi:10.1016/S0898-6568(00)00149-2.
  • Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20(1):55–72. doi:10.1146/annurev.immunol.20.091301.131133.
  • Tao L, Qiu Y, Fu X, et al. Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-ΚB pathways in human retinal pigment epithelium. J Neuroinflammation. 2016;13:1. doi:10.1186/s12974-016-0489-7.
  • Liu RP, Zou M, Wang JY, et al. Paroxetine ameliorates lipopolysaccharide-induced microglia activation via differential regulation of MAPK signaling. J Neuroinflammation. 2014;11:47. doi:10.1186/1742-2094-11-47.
  • Bin SW, Dong X, Kim YS, et al. Anti-inflammatory effects of batillaria multiformis water extracts via NF-кB and MAPK signaling pathways in LPS-induced RAW 264.7 cells. In: Hu J, Piao F, Schaffer SW, Idrissi AE, Wu JY, eds. Advances in Experimental Medicine and Biology. Vol. 1155. Berlin, Germany: Springer New York LLC; 2019:1001–1014. doi:10.1007/978-981-13-8023-5_83.
  • Chen X, Han R, Hao P, et al. Nepetin inhibits IL-1β induced inflammation via NF-κB and MAPKs signaling pathways in ARPE-19 cells. Biomed Pharmacother. 2018;101:87–93. doi:10.1016/j.biopha.2018.02.054.
  • Jang J-H, Lee SH, Jung K, Yoo H, Park G. Inhibitory effects of myricetin on lipopolysaccharide-induced neuroinflammation. Brain Sci. 2020;10(1):32. doi:10.3390/brainsci10010032.
  • Ko W, Park JS, Kim KW, Kim J, Kim YC, Oh H. Nardosinone-type sesquiterpenes from the hexane fraction of nardostachys jatamansi attenuate NF-κB and MAPK signaling pathways in lipopolysaccharide-stimulated BV2 microglial cells. Inflammation. 2018;41(4):1215–1228. doi:10.1007/s10753-018-0768-9.
  • Lu N, Malemud CJ. Extracellular signal-regulated kinase: A regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression. Int J Mol Sci. 2019;20(15):3792. doi:10.3390/ijms20153792.
  • Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006;24(1):21–44. doi:10.1080/02699050500284218.
  • Von Kriegsheim A, Baiocchi D, Birtwistle M, et al. Cell fate decisions are specified by the dynamic ERK interactome. Nat Cell Biol. 2009;11(12):1458–1464.doi:10.1038/ncb1994.
  • Maeng YS, Min JK, Kim JH, et al. ERK is an anti-inflammatory signal that suppresses expression of NF-κB-dependent inflammatory genes by inhibiting IKK activity in endothelial cells. Cell Signal. 2006;18(7):994–1005.doi:10.1016/j.cellsig.2005.08.007.
  • Choi HY, Lee JH, Jegal KH, Cho IJ, Kim YW, Kim SC. Oxyresveratrol abrogates oxidative stress by activating ERK-Nrf2 pathway in the liver. Chem Biol Interact. 2016;245:110–121. doi:10.1016/j.cbi.2015.06.024.
  • Kobayashi EH, Suzuki T, Funayama R, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624. doi:10.1038/ncomms11624.
  • Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta - Mol Basis Dis. 2017;1863(2):585–597. doi:10.1016/j.bbadis.2016.11.005.
  • Suzuki T, Yamamoto M. Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med. 2015;88(PartB):93–100. doi:10.1016/j.freeradbiomed.2015.06.006.
  • Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta - Mol Cell Res. 2018;1865(5):721–733. doi:10.1016/j.bbamcr.2018.02.010.
  • Salzano S, Checconi P, Hanschmann EM, et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A. 2014;111(33):12157–12162.doi:10.1073/pnas.1401712111.
  • Nakajima S, Kitamura M. Bidirectional regulation of NF-κB by reactive oxygen species: A role of unfolded protein response. Free Radic Biol Med. 2013;65:162–174. doi:10.1016/j.freeradbiomed.2013.06.020.
  • Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122(6):877–902. doi:10.1161/CIRCRESAHA.117.311401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.