195
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Stress Suppresses Systemic Th17/Treg Imbalance in Rats with Experimental Autoimmune Uveitis

, M.D, , Ph.D, , M.D, , M.D, , M.D & , M.D
Pages 1890-1900 | Received 21 Jan 2021, Accepted 16 Aug 2021, Published online: 01 Sep 2021

References

  • Palma-Gudiel H, Fañanás L, Horvath S, Zannas AS. Psychosocial stress and epigenetic aging. Int Rev Neurobiol. 2020;150:107–128.
  • DeSocio JE. Epigenetics maternal prenatal psychosocial stress, and infant mental health. Arch Psychiatr Nurs. 2018;32(6):901–906. doi:10.1016/j.apnu.2018.09.001.
  • Zannas AS. Epigenetics as a key link between psychosocial stress and aging: concepts, evidence, mechanisms. Dialogues Clin Neurosci. 2019;21:389–396.
  • Dar T, Radfar A, Abohashem S, Pitman RK, Tawakol A, Osborne MT. Psychosocial stress and cardiovascular disease. Curr Treat Options Cardiovasc Med. 2019;21(5):23. doi:10.1007/s11936-019-0724-5.
  • Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med. 2014;76(3):181–189. doi:10.1097/PSY.0000000000000049.
  • Ishtiaq SM, Khan JA, Arshad MI. Psychosocial-stress, liver regeneration and weight gain: a conspicuous pathophysiological triad. Cell Physiol Biochem. 2018;46(1):1–8. doi:10.1159/000488378.
  • Blume J, Douglas SD, Evans DL. Immune suppression and immune activation in depression. Brain Behav Immun. 2011;25(2):221–229. doi:10.1016/j.bbi.2010.10.008.
  • Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140(3):774–815. doi:10.1037/a0035302.
  • Bartrop RW, Luckhurst E, Lazarus L, Kiloh LG, Penny R. Depressed lymphocyte function after bereavement. Lancet. 1977;1(8016):834–836. doi:10.1016/S0140-6736(77)92780-5.
  • Berk M, Wadee AA, Kuschke RH, O’Neill-Kerr A. Acute phase proteins in major depression. J Psychosom Res. 1997;43(5):529–534. doi:10.1016/S0022-3999(97)00139-6.
  • Maes M, Bosmans E, Meltzer HY, Scharpé S, Suy E. Interleukin-1 beta: a putative mediator of HPA axis hyperactivity in major depression? Am J Psychiatry. 1993;150:1189–1193.
  • Dowlati Y, Herrmann N, Swardfager W, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–457. doi:10.1016/j.biopsych.2009.09.033.
  • Sluzewska A, Rybakowski J, Bosmans E, et al. Indicators of immune activation in major depression. Psychiatry Res. 1996;64(3):161–167. doi:10.1016/S0165-1781(96)02783-7.
  • Thomas AJ, Davis S, Morris C, Jackson E, Harrison R, O’Brien JT. Increase in interleukin-1beta in late-life depression. Am J Psychiatry. 2005;162(1):175–177. doi:10.1176/appi.ajp.162.1.175.
  • Godbout JP, Glaser R. Stress-induced immune dysregulation: implications for wound healing, infectious disease and cancer. J Neuroimmune Pharmacol. 2006;1(4):421–427. doi:10.1007/s11481-006-9036-0.
  • Yan W, Chen T, Long P, et al. Effects of post-treatment hydrogen gas inhalation on uveitis induced by endotoxin in rats. Med Sci Monit. 2018;24:3840–3847. doi:10.12659/MSM.907269.
  • Del Prete GQ, Oswald K, Lara A, et al. Elevated plasma viral loads in romidepsin-treated simian immunodeficiency virus-infected rhesus macaques on suppressive combination antiretroviral therapy. Antimicrob Agents Chemother. 2015;60(3):1560–1572. doi:10.1128/AAC.02625-15.
  • Schiffman RM, Jacobsen G, Whitcup SM. Visual functioning and general health status in patients with uveitis. Arch Ophthalmol. 2001;119(6):841–849. doi:10.1001/archopht.119.6.841.
  • Miserocchi E, Modorati G, Mosconi P, Colucci A, Bandello F. Quality of life in patients with uveitis on chronic systemic immunosuppressive treatment. Ocul Immunol Inflamm. 2010;18(4):297–304. doi:10.3109/09273941003637510.
  • Qian Y, Glaser T, Esterberg E, Acharya NR. Depression and visual functioning in patients with ocular inflammatory disease. Am J Ophthalmol. 2012;153(2):370–378.e2. doi:10.1016/j.ajo.2011.06.028.
  • Parker DM, Angeles-Han ST, Stanton AL, Holland GN. Chronic anterior uveitis in children: psychosocial challenges for patients and their families. Am J Ophthalmol. 2018;191:xvi–xxiv. doi:10.1016/j.ajo.2018.03.028.
  • Beare N. Anterior uveitis and its relation to stress. Br J Ophthalmol. 2001;85(3):376. doi:10.1136/bjo.85.3.376.
  • Carrim ZI, Ahmed TY, Taguri AH. The relationship between stress and acute anterior uveitis. Acta Ophthalmol Scand. 2006;84(6):795–798. doi:10.1111/j.1600-0420.2006.00752.x.
  • Maca SM, Schiesser AW, Sobala A, et al. Distress, depression and coping in HLA-B27–associated anterior uveitis with focus on gender differences. Br J Ophthalmol. 2011;95(5):699–704. doi:10.1136/bjo.2009.174839.
  • Maca SM, Wagner J, Weingessel B, Vécsei-Marlovits PV, Gruber K, Schiesser AW. Acute anterior uveitis is associated with depression and reduction of general health. Br J Ophthalmol. 2013;97(3):333–337. doi:10.1136/bjophthalmol-2012-302304.
  • Franke GH, Schütte E, Heiligenhaus A. Psychosomatik der Uveitis – eine Pilotstudie [Rehabilitation-psychological aspects of uveitis]. Psychother Psychosom Med Psychol. 2005;55(2):65–71. doi:10.1055/s-2004-828504.
  • Khanfer R, Wallace G, Keane PA, Phillips AC. Uveitis and psychological stress. Insight. 2012;37:11–16.
  • Pepple KL, Wilson L, Van Gelder RN. Comparison of aqueous and vitreous lymphocyte populations from two rat models of experimental uveitis. Invest Ophthalmol Vis Sci. 2018;59(6):2504–2511. doi:10.1167/iovs.18-24192.
  • Tian Q, Bi H, Cui Y, et al. Qingkailing injection alleviates experimental autoimmune uveitis in rats via inhibiting Th1 and Th17 effector cells. Biol Pharm Bull. 2012;35(11):1991–1996. doi:10.1248/bpb.b12-00449.
  • Jiang G, Sun D, Yang H, Lu Q, Kaplan HJ, Shao H. HMGB1 is an early and critical mediator in an animal model of uveitis induced by IRBP-specific T cells. J Leukoc Biol. 2014;95(4):599–607. doi:10.1189/jlb.0613337.
  • Zhang L, Wan F, Song J, et al. Imbalance between Th17 cells and regulatory T cells during monophasic experimental autoimmune uveitis. Inflammation. 2016;39(1):113–122. doi:10.1007/s10753-015-0229-7.
  • Tang K, Guo D, Zhang L, et al. Immunomodulatory effects of Longdan Xiegan Tang on CD4+/CD8+ T cells and associated inflammatory cytokines in rats with experimental autoimmune uveitis. Mol Med Rep. 2016;14(3):2746–2754. doi:10.3892/mmr.2016.5558.
  • Zhao J, Chen M, Xu H. Experimental autoimmune uveoretinitis (EAU)-related tissue damage and angiogenesis is reduced in CCL2⁻/⁻CXCR1gfp/gfp mice. Invest Ophthalmol Vis Sci. 2014;55(11):7572–7582. doi:10.1167/iovs.14-15495.
  • Weinstein JE, Pepple KL. Cytokines in uveitis. Curr Opin Ophthalmol. 2018;29(3):267–274. doi:10.1097/ICU.0000000000000466.
  • Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13(6):668–677. doi:10.1016/j.autrev.2013.12.004.
  • Burkett PR, Meyer ZU, Horste G, Kuchroo VK. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Invest. 2015;125(6):2211–2219. doi:10.1172/JCI78085.
  • Miyara M, Ito Y, Sakaguchi S. TREG-cell therapies for autoimmune rheumatic diseases. Nat Rev Rheumatol. 2014;10(9):543–551. doi:10.1038/nrrheum.2014.105.
  • Chen X, Su W, Wan T, et al. Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway. Biochem Pharmacol. 2017;142:111–119. doi:10.1016/j.bcp.2017.06.136.
  • Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52(2):90–110. doi:10.1159/000087097.
  • Surget A, Wang Y, Leman S, et al. Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal. Neuropsychopharmacology. 2009;34(6):1363–1380. doi:10.1038/npp.2008.76.
  • Bilu C, Einat H, Kronfeld-Schor N. Utilization of diurnal rodents in the research of depression. Drug Dev Res. 2016;77(7):336–345. doi:10.1002/ddr.21346.
  • Cryan JF, Holmes A. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov. 2005;4(9):775–790. doi:10.1038/nrd1825.
  • Guo DD, Hu B, Tang HY, et al. Proteomic profiling analysis reveals a link between experimental autoimmune uveitis and complement activation in rats. Scand J Immunol. 2017;85(5):331–342. doi:10.1111/sji.12539.
  • Shao H, Lei S, Sun SL, Kaplan HJ, Sun D. Conversion of monophasic to recurrent autoimmune disease by autoreactive T cell subsets. J Immunol. 2003;171(10):5624–5630. doi:10.4049/jimmunol.171.10.5624.
  • Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992;16(4):525–534. doi:10.1016/S0149-7634(05)80194-0.
  • Charmandari E, Tsigos C, Chrousos GP. Endocrinology of the stress response. Annu Rev Physiol. 2005;67(1):259–284. doi:10.1146/annurev.physiol.67.040403.120816.
  • Dragoş D, Tănăsescu MD. The effect of stress on the defense systems. J Med Life. 2010;3:10–18.
  • Juruena MF, Eror F, Cleare AJ, Young AH. The role of early life stress in HPA axis and anxiety. Adv Exp Med Biol. 2020;1191:141–153.
  • Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8:383–395.
  • van Bodegom M, Homberg JR, Henckens MJAG. Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front Cell Neurosci. 2017;11:87.
  • Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation. 2015;22(1–2):6–19. doi:10.1159/000362736.
  • Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004;5(10):617–625. doi:10.1016/S1470-2045(04)01597-9.
  • Dhabhar FS. Acute stress enhances while chronic stress suppresses skin immunity. The role of stress hormones and leukocyte trafficking. Ann N Y Acad Sci. 2000;917:876–893. doi:10.1111/j.1749-6632.2000.tb05454.x.
  • Dhabhar FS, Malarkey WB, Neri E, McEwen BS. Stress-induced redistribution of immune cells–from barracks to boulevards to battlefields: a tale of three hormones–Curt Richter Award winner. Psychoneuroendocrinology. 2012;37(9):1345–1368. doi:10.1016/j.psyneuen.2012.05.008.
  • Kennedy PJ, Cryan JF, Quigley EM, Dinan TG, Clarke G. A sustained hypothalamic-pituitary-adrenal axis response to acute psychosocial stress in irritable bowel syndrome. Psychol Med. 2014;44(14):3123–3134. doi:10.1017/S003329171400052X.
  • Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci USA. 1999;96(3):1059–1064. doi:10.1073/pnas.96.3.1059.
  • Morey JN, Boggero IA, Scott AB, Segerstrom SC. Current directions in stress and human immune function. Curr Opin Psychol. 2015;5:13–17. doi:10.1016/j.copsyc.2015.03.007.
  • Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res. 2014;58(2–3):193–210. doi:10.1007/s12026-014-8517-0.
  • Venkatesh HN, Ravish H, Wilma Delphine Silvia CR, Srinivas H. Molecular signature of the immune response to yoga therapy in stress-related chronic disease conditions: an insight. Int J Yoga. 2020;13(1):9–17. doi:10.4103/ijoy.IJOY_82_18.
  • Li H, Chen L, Zhang Y, et al. Chronic stress promotes lymphocyte reduction through TLR2 mediated PI3K signaling in a β-arrestin 2 dependent manner. J Neuroimmunol. 2011;233(1–2):73–79. doi:10.1016/j.jneuroim.2010.11.015.
  • Hong M, Zheng J, Ding ZY, et al. Imbalance between Th17 and Treg cells may play an important role in the development of chronic unpredictable mild stress-induced depression in mice. Neuroimmunomodulation. 2013;20(1):39–50. doi:10.1159/000343100.
  • Bagnato G, De Filippis LG, Caliri A, et al. Comparazione dei livelli di ansia e depressione in soggetti affetti da patologie reumatiche su base autoimmune e cronico-degenerative: dati preliminari [Comparation of levels of anxiety and depression in patients with autoimmune and chronic-degenerative rheumatic: preliminary data]. Reumatismo. 2006;58:206–211.
  • Harpaz I, Abutbul S, Nemirovsky A, Gal R, Cohen H, Monsonego A. Chronic exposure to stress predisposes to higher autoimmune susceptibility in C57BL/6 mice: glucocorticoids as a double-edged sword. Eur J Immunol. 2013;43(3):758–769. doi:10.1002/eji.201242613.
  • Sittivarakul W, Wongkot P. Anxiety and depression among patients with uveitis and ocular inflammatory disease at a tertiary center in Southern Thailand: vision-related quality of life, sociodemographics, and clinical characteristics associated. Ocul Immunol Inflamm. 2019;27(5):731–742. doi:10.1080/09273948.2018.1484495.
  • Onal S, Oray M, Yasa C, et al. Screening for depression and anxiety in patients with active uveitis. Ocul Immunol Inflamm. 2018;26(7):1078–1093. doi:10.1080/09273948.2017.1319959.
  • Sekeroglu HT, Sekeroglu MA. Ocular inflammation and depression: ophthalmologists’ perspective. Curr Top Med Chem. 2018;18(16):1402–1407. doi:10.2174/1568026618666180613093722.
  • Can Sandikci S, Colak S, Omma A, Enecik ME. An evaluation of depression, anxiety and fatigue in patients with Behçet’s disease. Int J Rheum Dis. 2019;22(6):974–979. doi:10.1111/1756-185X.13411.
  • Ilhan B, Can M, Alibaz-Oner F, et al. Fatigue in patients with Behçet’s syndrome: relationship with quality of life, depression, anxiety, disability and disease activity. Int J Rheum Dis. 2018;21(12):2139–2145. doi:10.1111/1756-185X.12839.
  • Berlinberg EJ, Gonzales JA, Doan T, Acharya NR. Association between noninfectious uveitis and psychological stress. JAMA Ophthalmol. 2019;137(2):199–205. doi:10.1001/jamaophthalmol.2018.5893.
  • Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003;14(2):155–174. doi:10.1016/S1359-6101(03)00002-9.
  • Yin X, Liu B, Wei H, et al. Activation of the Notch signaling pathway disturbs the CD4+/CD8+, Th17/Treg balance in rats with experimental autoimmune uveitis. Inflamm Res. 2019;68(9):761–774. doi:10.1007/s00011-019-01260-w.
  • Yin X, Wei H, Wu S, et al. DAPT reverses the Th17/Treg imbalance in experimental autoimmune uveitis in vitro via inhibiting Notch signaling pathway. Int Immunopharmacol. 2020;79:106107. doi:10.1016/j.intimp.2019.106107.
  • Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med. 2005;201(7):1061–1067. doi:10.1084/jem.20042276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.