183
Views
5
CrossRef citations to date
0
Altmetric
Letters to the Editor

Systemic Markers in Ophthalmic Manifestations of Post Corona Virus Disease-19 (COVID-19)

, MRCS(Edin), MS(Oph), DNB(Oph), MMed(Oph)(SIN), MNAMSORCID Icon, , DNB(Oph), , MD(Community medicine), , DNB (Oph)ORCID Icon, , FRCS(Glasgow), PhD(Maastricht), DNB(Oph)ORCID Icon & , DO, DNB(Oph)ORCID Icon
Pages 410-415 | Received 29 Jul 2021, Accepted 17 Dec 2021, Published online: 09 Feb 2022

References

  • Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 1, 2020;138:575–578. doi:10.1001/jamaophthalmol.2020.1291.
  • Acharya S, Diamond M, Anwar S, et al. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases. 2020;21:e00867. doi:10.1016/j.idcr.2020.e00867.
  • Insausti-García A, Reche-Sainz JA, Ruiz-Arranz C, et al. Papillophlebitis in a COVID-19 patient: inflammation and hypercoagulable state [published online ahead of print, 2020 Jul 30]. Eur J Ophthalmol. 2020:1120672120947591. doi:10.1177/1120672120947591.
  • Landecho MF, Yuste JR, Gándara E, et al. COVID-19 retinal microangiopathy as an in vivo biomarker of systemic vascular disease? J Intern Med. 2021;289:116–120. doi:10.1111/joim.13156.
  • Dumitrascu OM, Volod O, Bose S, et al. Acute ophthalmic artery occlusion in a COVID-19 patient on apixaban. J Stroke Cerebrovasc Dis. 2020;29:104982. doi:10.1016/j.jstrokecerebrovasdis.2020.104982.
  • Ortiz-Seller A, Martínez Costa L, Hernández-Pons A, et al. Ophthalmic and neuro-ophthalmic manifestations of coronavirus disease 2019 (COVID-19). Ocul Immunol Inflamm. Nov 16 2020;28(8):1285–1289. doi:10.1080/09273948.2020.1817497.
  • Sanjay S, Srinivasan P, Jayadev C, et al. Post COVID-19 ophthalmic manifestations in an Asian Indian male. Ocul Immunol Inflamm. March 18, 2021;29:656–661. doi:10.1080/09273948.2020.1870147.
  • Sanjay S, Gowda PB, Rao B, et al. “Old wine in a new bottle” - post COVID-19 infection, central serous chorioretinopathy and the steroids. J Ophthalmic Inflamm Infect. 2021;11:14. doi:10.1186/s12348-021-00244-4.
  • Sanjay S, Mutalik D, Gowda S, et al. Post coronavirus disease (COVID-19) reactivation of a quiescent unilateral anterior uveitis. SN Compr Clin Med. June 7, 2021:1–5. doi: 10.1007/s42399-021-00985-2. Epub ahead of print.
  • Sanjay S, Kawali A, Mahendradas P, et al. Post coronavirus disease (COVID)-19 disease and unilateral visual impairment. Curr Eye Res. March 25, 2021:46:1938. doi:10.1007/s42399-021-00985-2
  • Mahendradas P, Hande P, Patil A, et al. Bilateral post fever retinitis with retinal vascular occlusions following severe acute respiratory syndrome Corona virus (SARS-CoV2) infection. Ocul Immunol Inflamm. July 2021;6:1–6. doi:10.1080/09273948.2021.1936564.
  • Sanjay S, Agrawal S, Jayadev C, et al. Posterior segment manifestations and imaging features of COVID-19. Med Hypothesis Discov Innov Ophthalmol. 2021 Fall;10(3):95–106. doi:10.51329/mehdiophthal1427.
  • Sanjay S, R. Rao VK, Mutalik D, et al. Post corona virus Disease-19 (COVID-19): Hyper inflammatory syndrome-associated bilateral anterior uveitis and multifocal serous retinopathy secondary to steroids. Indian J Rheumatol 2021;16:451–455. doi.10.4103/injr.injr_330_20
  • Sanjay S, Singh YP, Roy D, et al. Recurrent bilateral idiopathic anterior uveitis with vitritis post Coronavirus Disease 2019 infection. Indian J Rheumatol [serial online] 2021 [cited 2021 Dec 23];16:460–463. doi:10.4103/injr.injr_114_21
  • Jabs DA, Nussenblatt RB, Rosenbaum JT; Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140:509–516.
  • Nussenblatt RB, Palestine AG, Chan CC, et al. Standardization of vitreal inflammatory activity in intermediate and posterior uveitis. Ophthalmology. 1985;92:467–471. doi:10.1016/S0161-6420(85)34001-0.
  • Ji P, Zhu J, Zhong Z, et al. Association of elevated inflammatory markers and severe COVID-19: a meta-analysis. Medicine (Baltimore). 2020;99(47):e23315. doi:10.1097/MD.0000000000023315.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi:10.1016/S0140-6736(20)30566-3.
  • Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80:639–645. doi:10.1016/j.jinf.2020.03.019.
  • Wang Z, Yang B, Li Q, et al. Clinical features of 69 cases with Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis. 2020;71:769–777. doi:10.1093/cid/ciaa272.
  • Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–847. doi:10.1111/jth.14768.
  • Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720. doi:10.1056/NEJMoa2002032.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi:10.1016/S0140-6736(20)30183-5.
  • Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24:360. doi:10.1186/s13054-020-03077-0.
  • Spiezia L, Boscolo A, Poletto F, et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 2020;120:998–1000. doi:10.1055/s-0040-1714350.
  • Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18:1995–2002. doi:10.1111/jth.14888.
  • Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi:10.1001/jama.2020.1585.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi:10.1016/S0140-6736(20)30566-3.
  • Demelo-Rodríguez P, Cervilla-Muñoz E, Ordieres-Ortega L, et al. Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb Res. 2020;192:23–26. doi:10.1016/j.thromres.2020.05.018.
  • Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362. doi:10.1016/j.jcv.2020.104362.
  • Porfidia A, Pola R. Venous thromboembolism in COVID-19 patients. J Thromb Haemost. 2020;18:1516–1517. doi:10.1111/jth.14842.
  • Léonard-Lorant I, Delabranche X, Séverac F, et al. Acute pulmonary embolism in patients with COVID-19 at CT angiography and relationship to D-dimer levels. Radiology. 2020;296:E189–91. doi:10.1148/radiol.2020201561.
  • Zhang L, Yan X, Fan Q, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. Jun 2020;18(6):1324–1329. doi:10.1111/jth.14859.
  • Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18:1421–1424. doi:10.1111/jth.14830.
  • Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18:1747–1751. doi:10.1111/jth.14854.
  • Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. July 2020;18(7):1738–1742. doi:10.1111/jth.14850.
  • Vargas-Vargas M, Cortés-Rojo C. Ferritin levels and COVID-19. Rev Panam Salud Publica. 2020;44:e72. doi:10.26633/RPSP.2020.72.
  • Kernan KF, Carcillo JA. Hyperferritinemia and inflammation. Int Immunol. 2017;29:401–409. doi:10.1093/intimm/dxx031.
  • Wessling-Resnick M. Crossing the iron gate: why and how transferrin receptors mediate viral entry. Annu Rev Nutr. 2018;38:431–458. doi:10.1146/annurev-nutr-082117-051749.
  • Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev. 2020;19:102538. doi:10.1016/j.autrev.2020.102538.
  • Henry BM, de Oliveira MHS, Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58:1021–1028. doi:10.1515/cclm-2020-0369.
  • Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703–707. doi:10.1016/j.cell.2008.08.021.
  • Martinez-Outschoorn UE, Prisco M, Ertel A. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle. 2011;10:1271–1286. doi:10.4161/cc.10.8.15330.
  • Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–2629. doi:10.1172/JCI137244.
  • Johnstone J, Parsons R, Botelho F, et al. Immune biomarkers predictive of respiratory viral infection in elderly nursing home residents. PloS One. 2014;9:e108481. doi:10.1371/journal.pone.0108481.
  • Fisher SA, Rahimzadeh M, Brierley C, et al. The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: a systematic review. PloS One. 2019;14:e0222313. doi:10.1371/journal.pone.0222313.
  • Prietl B, Treiber G, Mader JK, et al. High-dose cholecalciferol supplementation significantly increases peripheral CD4+ Tregs in healthy adults without negatively affecting the frequency of other immune cells. Eur J Nutrition. 2014;53:751–759. doi:10.1007/s00394-013-0579-6
  • Melzer S, Zachariae S, Bocsi J, et al. Reference intervals for leukocyte subsets in adults: results from a population-based study using 10-color flow cytometry. Cytometry B Clin Cytom. 2015;88:270–281. doi:10.1002/cyto.b.21234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.