177
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

LINC00488 Induces Tumorigenicity in Retinoblastoma by Regulating microRNA-30a-5p/EPHB2 Axis

, MD, , MD, , MD, , MD, , MD & , MD
Pages 506-514 | Received 12 Oct 2021, Accepted 21 Jan 2022, Published online: 11 Apr 2022

References

  • Ortiz MV, Dunkel IJ. Retinoblastoma. J Child Neurol. 2016;31(2):227–236. doi:10.1177/0883073815587943.
  • Rodriguez-Galindo C, Orbach DB, VanderVeen D. Retinoblastoma. Pediatr Clin North Am. 2015;62(1):201–223. doi:10.1016/j.pcl.2014.09.014.
  • Mendoza PR, Grossniklaus HE. The biology of retinoblastoma. Prog Mol Biol Transl Sci. 2015;134:503–516.
  • Rao R, Honavar SG. Retinoblastoma. Indian J Pediatr. 2017;84(12):937–944. doi:10.1007/s12098-017-2395-0.
  • Dimaras H, Corson TW. Retinoblastoma, the visible CNS tumor: a review. J Neurosci Res. 2019;97(1):29–44. doi:10.1002/jnr.24213.
  • Yang M, Wei W. Long non-coding RNAs in retinoblastoma. Pathol Res Pract. 2019;215(8):152435. doi:10.1016/j.prp.2019.152435.
  • Hu C, Liu S, Han M, et al. Knockdown of lncRNA XIST inhibits retinoblastoma progression by modulating the miR-124/STAT3 axis. Biomed Pharmacother. 2018;107:547–554. doi:10.1016/j.biopha.2018.08.020.
  • Qi D, Wang M, Yu F. Knockdown of lncRNA-H19 inhibits cell viability, migration and invasion while promotes apoptosis via microRNA-143/RUNX2 axis in retinoblastoma. Biomed Pharmacother. 2019;109:798–805. doi:10.1016/j.biopha.2018.10.096.
  • Zhang H, Wang Z, Wu J, et al. Long noncoding RNAs predict the survival of patients with colorectal cancer as revealed by constructing an endogenous RNA network using bioinformation analysis. Cancer Med. 2019;8(3):863–873. doi:10.1002/cam4.1813.
  • Zhang J, Zhang X, Piao C, et al. A long non-coding RNA signature to improve prognostic prediction in clear cell renal cell carcinoma. Biomed Pharmacother. 2019;118:109079. doi:10.1016/j.biopha.2019.109079.
  • Gao J, Yin X, Yu X, et al. Long noncoding RNA LINC00488 functions as a ceRNA to regulate hepatocellular carcinoma cell growth and angiogenesis through miR-330-5. Dig Liver Dis. 2019;51(7):1050–1059. doi:10.1016/j.dld.2019.03.012.
  • Du Z, Sun T, Hacisuleyman E, et al. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat Commun. 2016;7:10982. doi:10.1038/ncomms10982.
  • Zhu J, Zeng Y, Li W, et al. CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer. Mol Cancer. 2017;16(1):34. doi:10.1186/s12943-017-0591-1.
  • Xiong J, Wei B, Ye Q, et al. MiR-30a-5p/UBE3C axis regulates breast cancer cell proliferation and migration. Biochem Biophys Res Commun. 2019;516(3):1013–1018. doi:10.1016/j.bbrc.2016.03.069.
  • Wu W, Zhao Y, Gao E, et al. LncRNA DLEU2 accelerates the tumorigenesis and invasion of non-small cell lung cancer by sponging miR-30a-5p. J Cell Mol Med. 2020;24(1):441–450. doi:10.1111/jcmm.14749.
  • Li J, Zhao L-M, Zhang C, et al. The lncRNA FEZF1-AS1 promotes the progression of colorectal cancer through regulating OTX1 and targeting miR-30a-5p. Oncol Res. 2020;28(1):51–63. doi:10.3727/096504019X15619783964700.
  • Martinez I, Cazalla D, Almstead LL, et al. miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci U S A. 2011;108(2):522–527. doi:10.1073/pnas.1017346108.
  • Gao Q, Liu W, Cai J, et al. EphB2 promotes cervical cancer progression by inducing epithelial-mesenchymal transition. Hum Pathol. 2014;45(2):372–381. doi:10.1016/j.humpath.2013.10.001.
  • Farshchian M, Nissinen L, Siljamäki E, et al. EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma. J Invest Dermatol. 2015;135(7):1882–1892. doi:10.1038/jid.2015.104.
  • Khansaard W, Techasen A, Namwat N, et al. Increased EphB2 expression predicts cholangiocarcinoma metastasis. Tumour Biol. 2014;35(10):10031–10041. doi:10.1007/s13277-014-2295-0.
  • He X, Chai P, Li F, et al. A novel LncRNA transcript, RBAT1, accelerates tumorigenesis through interacting with HNRNPL and cis-activating E2F3. Mol Cancer. 2020;19(1):115. doi:10.1186/s12943-020-01232-3.
  • Lu H, Zhang Z, Lu Y, et al. LncRNA NEAT1 acts as an miR-148b-3p sponge to regulate ROCK1 inhibition of retinoblastoma growth. Cancer Manag Res. 2021;13:5587–5597. doi:10.2147/CMAR.S271326.
  • Zhang X, Song L, Huang Y, et al. Downregulation of MST4 underlies a novel inhibitory role of MicroRNA Let-7a in the progression of retinoblastoma. Invest Ophthalmol Vis Sci. 2020;61(6):28. doi:10.1167/iovs.61.6.28.
  • Qin G, Tu X, Li H, et al. Long Noncoding RNA p53-Stabilizing and Activating RNA Promotes p53 Signaling by Inhibiting Heterogeneous Nuclear Ribonucleoprotein K deSUMOylation and Suppresses Hepatocellular Carcinoma. Hepatology. 2020;71(1):112–129. doi:10.1002/hep.30793.
  • Zhang C, Wu S. microRNA −378a-3p restrains the proliferation of retinoblastoma cells but promotes apoptosis of retinoblastoma cells via inhibition of FOXG1. Invest Ophthalmol Vis Sci. 2020;61(5):31. doi:10.1167/iovs.61.5.31.
  • Chen X, Zhao S, Li Q, et al. LncRNA NEAT1 knockdown inhibits retinoblastoma progression by miR-3619-5p/LASP1 axis. Front Genet. 2020;11:574145. doi:10.3389/fgene.2020.574145.
  • Song L, Huang Y, Zhang X, et al. Downregulation of microRNA-224-3p Hampers Retinoblastoma Progression via Activation of the Hippo-YAP Signaling Pathway by Increasing LATS2. Invest Ophthalmol Vis Sci. 2020;61(3):32. doi:10.1167/iovs.61.3.32.
  • Zeng Z, Gao Z-L, Zhang Z-P, et al. Downregulation of CKS1B restrains the proliferation, migration, invasion and angiogenesis of retinoblastoma cells through the MEK/ERK signaling pathway. Int J Mol Med. 2019;44(1):103–114. doi:10.3892/ijmm.2019.4183.
  • Wang L, Yang D, Tian R, et al. NEAT1 promotes retinoblastoma progression via modulating miR-124. J Cell Biochem. 2019;120(9):15585–15593. doi:10.1002/jcb.28825.
  • Gidlof O, Bader K, Celik S, et al. Inhibition of the long non-coding RNA NEAT1 protects cardiomyocytes from hypoxia in vitro via decreased pri-miRNA processing. Cell Death Dis. 2020;11(8):677. doi:10.1038/s41419-020-02854-7.
  • Liu Z, Huang Y, Zhang F, et al. Autophagy-related gene 7 deficiency caused by miR-154-5p overexpression suppresses the cell viability and tumorigenesis of retinoblastoma by increasing cell apoptosis. Ann Transl Med. 2020;8(21):1451. doi:10.21037/atm-20-6009.
  • Liu S, Yan G, Zhang J, et al. Knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) inhibits proliferation, migration, and invasion and promotes apoptosis by targeting miR-124 in retinoblastoma. Oncol Res. 2018;26(4):581–591. doi:10.3727/096504017X14953948675403.
  • Li L, Kang L, Zhao W, et al. miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett. 2017;400:89–98. doi:10.1016/j.canlet.2017.04.034.
  • Chen C, Tang J, Xu S, et al. miR-30a-5p Inhibits Proliferation and Migration of Lung Squamous Cell Carcinoma Cells by Targeting FOXD1. Biomed Res Int. 2020;2020:2547902. doi:10.1155/2020/2547902.
  • Liu E, Sun X, Li J, et al. miR30a5p inhibits the proliferation, migration and invasion of melanoma cells by targeting SOX4. Mol Med Rep. 2018;18(2):2492–2498. doi:10.3892/mmr.2018.9166.
  • Tao J, Cong H, Wang H, et al. MiR-30a-5p inhibits osteosarcoma cell proliferation and migration by targeting FOXD1. Biochem Biophys Res Commun. 2018;503(2):1092–1097. doi:10.1016/j.bbrc.2018.06.121.
  • Zhou L, Jia S, Ding G, et al. Down-regulation of miR-30a-5p is associated with poor prognosis and promotes chemoresistance of gemcitabine in pancreatic ductal adenocarcinoma. J Cancer. 2019;10(21):5031–5040. doi:10.7150/jca.31191.
  • Wang L, Zhao S, Yu M. Mechanism of low expression of miR-30a-5p on epithelial-mesenchymal transition and metastasis in ovarian cancer. DNA Cell Biol. 2019;38(4):341–351. doi:10.1089/dna.2018.4396.
  • Yin J, Li Z, Ye L, et al. EphB2 represents an independent prognostic marker in patients with gastric cancer and promotes tumour cell aggressiveness. J Cancer. 2020;11(10):2778–2787. doi:10.7150/jca.38098.
  • Qiu W, Song S, Chen W, et al. Hypoxia-induced EPHB2 promotes invasive potential of glioblastoma. Int J Clin Exp Pathol. 2019;12(2):539–548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.