341
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Differential Proteins Expression Distinguished Between Patients With Infectious and Noninfectious Uveitis

, MD, MBAORCID Icon, , PhDORCID Icon, , PhD, , PhD, , PhDORCID Icon, , MSORCID Icon, , PhD, , PhDORCID Icon, , PhDORCID Icon, , MD, PhDORCID Icon, , MD, PhDORCID Icon, , PhDORCID Icon, , PhD & , MD, PhD, MBAORCID Icon show all
Pages 40-47 | Received 15 Mar 2022, Accepted 15 Nov 2022, Published online: 13 Jan 2023

References

  • Krishna U, Ajanaku D, Denniston AK, Gkika T. Uveitis: a sight-threatening disease which can impact all systems. Postgrad Med J. 2017 Dec;93(1106):766–773. doi:10.1136/postgradmedj-2017-134891.
  • Merida S, Palacios E, Navea A, Bosch-Morell F. New immunosuppressive therapies in uveitis treatment. Int J Mol Sci. 2015 Aug 11;16(8):18778–18795. doi:10.3390/ijms160818778.
  • Silva LM, Muccioli C, Oliveira F, Arantes TE, Gonzaga LR, Nakanami CR. Visual impairment from uveitis in a reference hospital of Southeast Brazil: a retrospective review over a twenty years period. Arq Bras Oftalmol. 2013 Nov-Dec;76(6):366–369. doi:10.1590/S0004-27492013000600010.
  • Jin H, Zhu B, Liu X, Jin J, Zou H. Metabolic characterization of diabetic retinopathy: an 1H-NMR-based metabolomic approach using human aqueous humor. J Pharm Biomed Anal. 2019 Sep 10;174:414–421. doi:10.1016/j.jpba.2019.06.013.
  • Kuo MT, Fang PC, Chao TL, et al. Tear proteomics approach to monitoring Sjögren syndrome or dry eye disease. Int J Mol Sci. 2019 Apr 19;20(8):1932. doi:10.3390/ijms20081932.
  • Liang A, Qin W, Zhang M, Gao F, Zhao C, Gao Y. Profiling tear proteomes of patients with unilateral relapsed Behcet’s disease-associated uveitis using data-independent acquisition proteomics. PeerJ. 2020 Jun 19;8:e9250. doi:10.7717/peerj.9250.
  • Gold L, Ayers D, Bertino J, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5(12):e15004. doi:10.1371/journal.pone.0015004.
  • Han Z, Xiao Z, Kalantar-Zadeh K, et al. Validation of a novel modified aptamer-based array proteomic platform in patients with end-stage renal disease. Diagnostics (Basel). 2018 Oct 8;8(4):71. doi:10.3390/diagnostics8040071.
  • Graumann J, Finkernagel F, Reinartz S, et al. Multi-platform affinity proteomics identify proteins linked to metastasis and immune suppression in ovarian cancer plasma. Front Oncol. 2019 Nov 1;9:1150. doi:10.3389/fonc.2019.01150.
  • Shubin AV, Kollar B, Dillon ST, Pomahac B, Libermann TA, Riella LV. Blood proteome profiling using aptamer-based technology for rejection biomarker discovery in transplantation. Sci Data. 2019 Dec 9;6(1):314. doi:10.1038/s41597-019-0324-y.
  • Dong L, Watson J, Cao S, et al. Aptamer based proteomic pilot study reveals a urine signature indicative of pediatric urinary tract infections. PLoS One. 2020 Jul 6;15(7):e0235328. doi:10.1371/journal.pone.0235328.
  • Jabs DA, Nussenblatt RB, Rosenbaum JT, Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol. 2005 Sep;140(3):509–516.
  • Belfort R Jr, Moura NC, Mendes NF. T and B lymphocytes in the aqueous humor of patients with uveitis. Arch Ophthalmol. 1982 Mar;100(3):465–467. doi:10.1001/archopht.1982.01030030467019.
  • Emilsson V, Ilkov M, Lamb JR, et al. Co-regulatory networks of human serum proteins link genetics to disease. Science. 2018 August 24;361(6404):769. doi:10.1126/science.aaq1327.
  • Subramanian A, Tamayo P, Mootha V, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS. 2005 Oct 25;102(43):15545–15550. doi:10.1073/pnas.0506580102.
  • Zheng H, Yang F, Ea V, et al. Proteomics profiling of plasma exosomes in VKH patients. Curr Mol Med. 2020 Jul 18;21(8):675–689. doi:10.2174/1566524020666200719021653.
  • Eidet JR, Jørstad ØK, Fostad IG, et al. Unilateral acute anterior uveitis is associated with ipsilateral changes in the tear fluid proteome that involves the LXR/RXR pathway. J Ophthalmic Inflamm Infect. 2020 May 27;10(1):13. doi:10.1186/s12348-020-00204-4.
  • Sepah YJ, Velez G, Tang PH, et al. Proteomic analysis of intermediate uveitis suggests myeloid cell recruitment and implicates IL-23 as a therapeutic target. Am J Ophthalmol Case Rep. 2020 Mar 6;18:100646. doi:10.1016/j.ajoc.2020.100646.
  • Sharma S, Bollinger KE, Kodeboyina SK, et al. Proteomic alterations in aqueous humor from patients with primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2018 May 1;59(6):2635–2643. doi:10.1167/iovs.17-23434.
  • Marino AP, Dos Santos LI, Henriques PM, et al. Circulating inflammatory mediators as biomarkers of ocular toxoplasmosis in acute and in chronic infection. J Leukoc Biol. 2020 Oct;108(4):1253–1264. doi:10.1002/JLB.4MA0420-702R.
  • Xu J, Qin Y, Chang R, et al. Aqueous cytokine levels in four common uveitis entities. Int Immunopharmacol. 2020 Jan;78:106021. doi:10.1016/j.intimp.2019.106021.
  • Crane IJ, Liversidge J. Mechanisms of leukocyte migration across the blood-retina barrier. Semin Immunopathol. 2008 Apr;30(2):165–177. doi:10.1007/s00281-008-0106-7.
  • El-Asrar AMA, Berghmans N, Al-Obeidan SA, et al. Differential CXC and CX3C chemokine expression profiles in aqueous humor of patients with specific endogenous uveitic entities. Invest Ophthalmol Vis Sci. 2018 May 1;59(6):2222–2228. doi:10.1167/iovs.17-23225.
  • Sano K, Tanihara H, Heimark RL, et al. Protocadherins: a large family of cadherin-related molecules in central nervous system. EMBO J. 1993 Jun;12(6):2249–2256. doi:10.1002/j.1460-2075.1993.tb05878.x.
  • Gaudreault É, Paquet-Bouchard C, Fiola S, et al. TAK1 contributes to the enhanced responsiveness of LTB(4)-treated neutrophils to toll-like receptor ligands. Int Immunol. 2012 Nov;24(11):693–704. doi:10.1093/intimm/dxs074.
  • Jasenosky LD, Nambu A, Tsytsykova AV, et al. Identification of a distal locus enhancer element that controls cell type-specific TNF and LTA gene expression in human T cells. J Immunol. 2020 Nov 1;205(9):2479–2488. doi:10.4049/jimmunol.1901311.
  • Evrin PE, Pertoft H. Beta2-microglobulin in human blood cells. J Immunol. 1973 Oct;111(4):1147–1154.
  • Svatoňová J, Bořecká K, Adam P, Lánská V. Beta2-microglobulin as a diagnostic marker in cerebrospinal fluid: a follow-up study. Dis Markers. 2014;2014:495402.
  • Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004 Feb;16(1):3–9. doi:10.1016/j.smim.2003.10.003.
  • Abu Eid R, Friedman KM, Mkrtichyan M, et al. Akt1 and −2 inhibition diminishes terminal differentiation and enhances central memory CD8+ T-cell proliferation and survival. Oncoimmunology. 2015 Feb 3;4(5):e1005448. doi:10.1080/2162402X.2015.1005448.
  • Helou YA, Petrashen AP, Salomon AR. Vav1 regulates T-cell activation through a feedback mechanism and crosstalk between the T-cell receptor and CD28. J Proteome Res. 2015 Jul 2;14(7):2963–2975. doi:10.1021/acs.jproteome.5b00340.
  • Zhou YF, Chen AQ, Wu JH, et al. Sema3E/PlexinD1 signaling inhibits postischemic angiogenesis by regulating endothelial DLL4 and filopodia formation in a rat model of ischemic stroke. FASEB J. 2019 Apr;33(4):4947–4961. doi:10.1096/fj.201801706RR.
  • Xiao Q, Wu J, Wang WJ, et al. DKK2 imparts tumor immunity evasion through β-catenin-independent suppression of cytotoxic immune-cell activation. Nat Med. 2018 Mar;24(3):262–270. doi:10.1038/nm.4496.
  • Yang M, Liang Z, Yang M, et al. Role of bone morphogenetic protein-9 in the regulation of glucose and lipid metabolism. FASEB J. 2019 Sep;33(9):10077–10088. doi:10.1096/fj.201802544RR.
  • Rosenbaum JT, Harrington CA, Searles RP, et al. Identifying RNA biomarkers and molecular pathways involved in multiple subtypes of uveitis. Am J Ophthalmol. 2021 Jun;226:226–234. doi:10.1016/j.ajo.2021.01.007.
  • Yu S, Mao C, Yu J, Qi X, Wang J, Lu H. A study of the key genes and inflammatory signaling pathways involved in HLA-B27-associated acute anterior uveitis families. Int J Mol Med. 2018 Jul;42(1):259–269. doi:10.3892/ijmm.2018.3596.
  • Lie S, Rochet E, Segerdell E, et al. Immunological molecular responses of human retinal pigment epithelial cells to infection with Toxoplasma gondii. Front Immunol. 2019 May 1;10:708. doi:10.3389/fimmu.2019.00708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.