4,681
Views
0
CrossRef citations to date
0
Altmetric
Invited Reviews

Pathogenesis of Bacterial Uveitis

, PhD, , MD, PhD, , MD, , MD & , MSORCID Icon
Pages 1396-1404 | Received 13 Jul 2022, Accepted 02 Dec 2022, Published online: 09 Jan 2023

References

  • Teweldemedhin M, Gebreyesus H, Atsbaha AH, Asgedom SW, Saravanan M. Bacterial profile of ocular infections: a systematic review. BMC Ophthalmol. 2017;17:212. doi:10.1186/s12886-017-0612-2.
  • Basu S, Elkington P, Rao NA. Pathogenesis of ocular tuberculosis: new observations and future directions. Tuberculosis. 2020;124:101961. doi:10.1016/j.tube.2020.101961.
  • Furtado JM, Simões M, Vasconcelos-Santos D, et al. Ocular syphilis. Surv Ophthalmol. 2022;67:440–462. doi:10.1016/j.survophthal.2021.06.003.
  • Doron S, Gorbach SL. Bacterial infections: overview. Int Encycl Public Health. 2008;273–282. doi:10.1016/B978-012373960-5.00596-7.
  • Silva M. Classical labeling of bacterial pathogens according to their lifestyle in the host: inconsistencies and alternatives. Front Microbiol. 2012;3. doi:10.3389/fmicb.2012.00071.
  • Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol. 2013;13:206–218. doi:10.1038/nri3391.
  • Stein-Streilein J, Lucas K. A current understanding of ocular immune privilege. Current Immunol Rev. 2011;7:336–343. doi:10.2174/157339511796196683.
  • Streilein JW. Regional immunity and ocular immune privilege. Chem Immunol. 1999;73:11–38. doi:10.1159/000058741.
  • Streilein JW. Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol. 2003;74:179–185. doi:10.1189/jlb.1102574.
  • Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3:879–889. doi:10.1038/nri1224.
  • Teng O, Ang CKE, Guan XL. Macrophage-bacteria interactions-a lipid-centric relationship. Front Immunol. 2017;8:1836. doi:10.3389/fimmu.2017.01836.
  • Prendergast RA, Iliff CE, Coskuncan NM, et al. T cell traffic and the inflammatory response in experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 1998;39:754–762.
  • Thurau SR, Mempel TR, Flugel A, et al. The fate of autoreactive, GFP+ T cells in rat models of uveitis analyzed by intravital fluorescence microscopy and FACS. Int Immunol. 2004;16:1573–1582. doi:10.1093/intimm/dxh158.
  • Wildner G, Diedrichs-Möhring M. Resolution of uveitis. Semin Immunopathol. 2019;41:727–736. doi:10.1007/s00281-019-00758-z.
  • Wildner G, Diedrichs-Möhring M. Molecular mimicry and uveitis. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.580636.
  • Jha P, Bora PS, Bora NS. The role of complement system in ocular diseases including uveitis and macular degeneration. Mol Immunol. 2007;44:3901–3908. doi:10.1016/j.molimm.2007.06.145.
  • Busch C, Annamalai B, Abdusalamova K, et al. Anaphylatoxins activate Ca(2+), Akt/PI3-Kinase, and FOXO1/FoxP3 in the retinal pigment epithelium. Frontiers Immunol. 2017;8:703. doi:10.3389/fimmu.2017.00703.
  • Wroblewski KJ, Hidayat AA, Neafie RC, Rao NA, Zapor M. Ocular tuberculosis: a clinicopathologic and molecular study. Ophthalmology. 2011;118:772–777. doi:10.1016/j.ophtha.2010.08.011.
  • Basu S. Absence of evidence as the evidence of absence: the curious case of latent infection causing ocular tuberculosis. Frontiers Ophthalmol. 2022;2. doi:10.3389/fopht.2022.874400.
  • Hatai H, Lepelley A, Zeng W, Hayden MS, Ghosh S. Toll-like receptor 11 (TLR11) interacts with flagellin and profilin through disparate mechanisms. PLoS One. 2016;11:e0148987. doi:10.1371/journal.pone.0148987.
  • Yang J, Yan H. TLR5: beyond the recognition of flagellin. Cell Mol Immunol. 2017;14:1017–1019. doi:10.1038/cmi.2017.122.
  • Takeda K, Takeuchi O, Akira S. Recognition of lipopeptides by Toll-like receptors. J Endotoxin Res. 2002;8:459–463. doi:10.1177/09680519020080060101.
  • Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol. 2014;7:a016246–a. doi:10.1101/cshperspect.a016246.
  • Lugrin J, Martinon F. The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev. 2018;281:99–114. doi:10.1111/imr.12618.
  • Cassel SL, Joly S, Sutterwala FS. The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol. 2009;21:194–198. doi:10.1016/j.smim.2009.05.002.
  • Rodríguez-Martínez S, Cancino-Díaz ME, Jiménez-Zamudio L, García-Latorre E, Cancino-Díaz JC. TLRs and NODs mRNA expression pattern in healthy mouse eye. Br J Ophthalmol. 2005;89:904–910. doi:10.1136/bjo.2004.056218.
  • Lin X, Fang D, Zhou H, Su SB. The expression of Toll-like receptors in murine Müller cells, the glial cells in retina. Neurol Sci. 2013;34:1339–1346. doi:10.1007/s10072-012-1236-1.
  • Xu W-Q, Wang Y-S. The role of Toll-like receptors in retinal ischemic diseases. Int J Ophthalmol. 2016;9:1343–1351. doi:10.18240/ijo.2016.09.19.
  • Mayito J, Andia I, Belay M, et al. Anatomic and cellular niches for Mycobacterium tuberculosis in latent tuberculosis infection. J Infect Dis. 2019;219:685–694. doi:10.1093/infdis/jiy579.
  • Liversidge JM, Sewell HF, Forrester JV. Human retinal pigment epithelial cells differentially express MHC class II (HLA, DP, DR and DQ) antigens in response to in vitro stimulation with lymphokine or purified IFN-gamma. Clin Exp Immunol. 1988;73:489–494.
  • Kumar MV, Nagineni CN, Chin MS, Hooks JJ, Detrick B. Innate immunity in the retina: toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J Neuroimmunol. 2004;153:7–15. doi:10.1016/j.jneuroim.2004.04.018.
  • Rao NA, Saraswathy S, Smith RE. Tuberculous uveitis: distribution of Mycobacterium tuberculosis in the retinal pigment epithelium. Arch Ophthalmol. 2006;124:1777–1779. doi:10.1001/archopht.124.12.1777.
  • Nazari H, Karakousis PC, Rao NA. Replication of Mycobacterium tuberculosis in retinal pigment epithelium. JAMA Ophthalmol. 2014;132:724–729. doi:10.1001/jamaophthalmol.2014.270.
  • Rao NA, Albini TA, Kumaradas M, Pinn ML, Fraig MM, Karakousis PC. Experimental ocular tuberculosis in Guinea pigs. Arch Ophthalmol. 2009;127:1162–1166. doi:10.1001/archophthalmol.2009.220.
  • Takaki K, Ramakrishnan L, Basu S. A zebrafish model for ocular tuberculosis. PLOS ONE. 2018;13:e0194982. doi:10.1371/journal.pone.0194982.
  • Damera SK, Panigrahi RK, Mitra S, Basu S. Role of extracellular Mycobacteria in blood-retinal barrier invasion in a zebrafish model of ocular TB. Pathogens. 2021;10:333. doi:10.3390/pathogens10030333.
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. doi:10.1126/science.1092385.
  • Pagán AJ, Ramakrishnan L. The formation and function of granulomas. Annu Rev Immunol. 2018;36:639–665. doi:10.1146/annurev-immunol-032712-100022.
  • De Groot-Mijnes JD, Rothova A, Van Loon AM, et al. Polymerase chain reaction and Goldmann-Witmer coefficient analysis are complimentary for the diagnosis of infectious uveitis. Am J Ophthalmol. 2006;141:313–318. doi:10.1016/j.ajo.2005.09.017.
  • Sawa T, Kinoshita M, Inoue K, Ohara J, Moriyama K. Immunoglobulin for treating bacterial infections: one more mechanism of action. Antibodies (Basel). 2019;8. doi:10.3390/antib8040052.
  • Lee Y, Kuchroo V. Defining the functional states of Th17 cells. F1000Res. 2015;4:132. doi:10.12688/f1000research.6116.1.
  • Forrester JV, Mölzer C, Kuffova L. Immune privilege furnishes a niche for latent infection. Frontiers Ophthalmol. 2022;2. doi:10.3389/fopht.2022.869046.
  • Forrester JV, Kuffova L, Dick AD. Autoimmunity, autoinflammation, and infection in uveitis. Am J Ophthalmol. 2018;189:77–85. doi:10.1016/j.ajo.2018.02.019.
  • Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya JM. Bystander activation and autoimmunity. J Autoimmun. 2019;103:102301.
  • Tagirasa R, Parmar S, Barik MR, Devadas S, Basu S. Autoreactive T cells in immunopathogenesis of TB-associated uveitis. Invest Ophthalmol Vis Sci. 2017;58:5682–5691. doi:10.1167/iovs.17-22462.
  • Wildner G, Diedrichs-Möhring M. Autoimmune uveitis induced by molecular mimicry of peptides from rotavirus, bovine casein and retinal S-antigen. Eur J Immunol. 2003;33:2577–2587. doi:10.1002/eji.200324058.
  • Lee Yun K, Menezes Juscilene S, Umesaki Y, Mazmanian Sarkis K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc National Acad Sci. 2011;108:4615–4622. doi:10.1073/pnas.1000082107.
  • Lee N, Kim WU. Microbiota in T-cell homeostasis and inflammatory diseases. Exp Mol Med. 2017;49:e340. doi:10.1038/emm.2017.36.
  • Ivanov II, Frutos RdL, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4:337–349.
  • Garip A, Diedrichs-Möhring M, Thurau SR, Deeg CA, Wildner G. Uveitis in a patient treated with Bacille-Calmette-Guérin: possible antigenic mimicry of mycobacterial and retinal antigens. Ophthalmology. 2009;116:2457–62.e1–2. doi:10.1016/j.ophtha.2009.05.021.
  • Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity. 2015;43:343–353. doi:10.1016/j.immuni.2015.07.014.
  • Shinohara T, Singh VK, Yamaki K, Abe T, Tsuda M, Suzuki S. S-antigen: molecular mimicry may play a role in autoimmune uveitis. Prog Clin Biol Res. 1991;362:163–190. Issn: 0361-7742.
  • Singh VK, Yamaki K, Abe T, Shinohara T. Molecular mimicry between uveitopathogenic site of retinal S-antigen and Escherichia coli protein: induction of experimental autoimmune uveitis and lymphocyte cross-reaction. Cell Immunol. 1989;122:262–273. doi:10.1016/0008-8749(89)90166-4.
  • Horai R, Sen HN, Caspi RR. Commensal microbiota as a potential trigger of autoimmune uveitis. Expert Rev Clin Immunol. 2017;13:291–293. doi:10.1080/1744666X.2017.1288098.
  • Chen H, Cho K-S, Vu THK, et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun. 2018;9:3209. doi:10.1038/s41467-018-05681-9.
  • Finnoff W. Changes in eyes of rabbits following injection of dead tubercle bacilli into common carotid artery. Am J Ophthalmol. 1924;7:365–372. doi:10.1016/S0002-9394(24)90818-X.
  • Basu S, Fowler BJ, Kerur N, Arnvig KB, Rao NA. NLRP3 inflammasome activation by mycobacterial ESAT-6 and dsRNA in intraocular tuberculosis. Microb Pathog. 2018;114:219–224. doi:10.1016/j.micpath.2017.11.044.
  • Caspi RR. Understanding autoimmune uveitis through animal models the Friedenwald lecture. Invest Ophthalmol Vis Sci. 2011;52:1873–1879.
  • Yakin M, Kesav N, Cheng SK, Caplash S, Gangaputra S, Sen HN. The association between QuantiFERON-TB gold test and clinical manifestations of uveitis in the United States. Am J Ophthalmol. 2021;230:181–187. doi:10.1016/j.ajo.2021.04.024.
  • Groen-Hakan F, van Laar JAM, Bakker M, van Hagen PM, Hardjosantoso H, Rothova A. Prevalence of positive QuantiFERON-TB gold in-tube test in uveitis and its clinical implications in a country nonendemic for tuberculosis. Am J Ophthalmol. 2020;211:151–158. doi:10.1016/j.ajo.2019.11.009.
  • Dutta Majumder P, Chen EJ, Shah J, et al. Ocular syphilis: an update. Ocul Immunol Inflamm. 2019;27:117–125. doi:10.1080/09273948.2017.1371765.
  • Klauder JV, Meyer GP. Chorioretinitis of congenital syphilis. AMA Arch Ophthalmol. 1953;49:139–157. doi:10.1001/archopht.1953.00920020144002.
  • Brown WH, Pearce L. Experimental syphilis in the rabbit: VII. Affections of the eyes. J Exp Med. 1921;34:167–183. doi:10.1084/jem.34.2.167.
  • Smith JL, Israel CW. Treponemes in aqueous humor in late seronegative syphilis. Trans Am Acad Ophthalmol Otolaryngol. 1968;72:63–75.
  • Smith JL, Singer JA, Reynolds DH, Moore MB Jr., Yobs AR, Clark JW Jr. Experimental ocular syphilis and neurosyphilis. Br J Vener Dis. 1965;41:15–23.
  • Hong M-C, Sheu S-J, Wu T-T, Chuang C-T. Ocular uveitis as the initial presentation of syphilis. J Chin Med Assoc. 2007;70:274–280. doi:10.1016/S0002-9394(00)00573-0.
  • Schmidt H, Goldschmidt E. Demonstration of motile treponemes in the aqueous humour in secondary syphilis. Br J Vener Dis. 1972;48:400–401. doi:10.1136/sti.48.5.400.
  • Thomas DD, Fogelman AM, Miller JN, Lovett MA. Interactions of Treponema pallidum with endothelial cell monolayers. Eur J Epidemiol. 1989;5:15–21. doi:10.1007/BF00145039.
  • Bazzazi N, Yavarikia A, Keramat F. Ocular involvement of brucellosis. Middle East Afr J Ophthalmol. 2013;20:95–97. doi:10.4103/0974-9233.106407.
  • Christopher S, Umapathy BL, Ravikumar KL. Brucellosis: review on the recent trends in pathogenicity and laboratory diagnosis. J Lab Physicians. 2010;2:55–60. doi:10.4103/0974-2727.72149.
  • Rolando I, Olarte L, Vilchez G, et al. Ocular manifestations associated with brucellosis: a 26-year experience in Peru. Clin Infect Dis. 2008;46:1338–1345. doi:10.1086/529442.
  • Cunningham ET, Koehler JE. Ocular bartonellosis. Am J Ophthalmol. 2000;130:340–349.
  • Ormerod LD, Dailey JP. Ocular manifestations of cat-scratch disease. Curr Opin Ophthalmol. 1999;10:209–216. doi:10.1097/00055735-199906000-00010.
  • Gass JD. Diseases of the optic nerve that may simulate macular disease. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1977;83:763–770.
  • Solley WA, Martin DF, Newman NJ, et al. Cat scratch disease: posterior segment manifestations. Ophthalmology. 1999;106:1546–1553. doi:10.1016/S0161-6420(99)90452-9.
  • Schotthoefer AM, Frost HM. Ecology and epidemiology of Lyme Borreliosis. Clin Lab Med. 2015;35:723–743.
  • Connell PP, O’Neill EC, Fabinyi D, et al. Endogenous endophthalmitis: 10-year experience at a tertiary referral centre. Eye (Lond). 2011;25:66–72. doi:10.1038/eye.2010.145.
  • Jackson TL, Eykyn SJ, Graham EM, Stanford MR. Endogenous bacterial endophthalmitis: a 17-year prospective series and review of 267 reported cases. Surv Ophthalmol. 2003;48:403–423. doi:10.1016/S0039-6257(03)00054-7.