123
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Replication Study of the Association of GAS6 and PROS1 Polymorphisms with Behçet’s Disease in a Japanese Population

, MD, PhD, , PhD, , MD, PhD, , MD, PhD, , MD, PhD, , MD, , MD, PhDORCID Icon, , MD, PhD & , MD, PhD show all
Pages 447-453 | Received 10 Feb 2022, Accepted 22 Jan 2023, Published online: 22 Feb 2023

References

  • Kaklamani VG, Vaiopoulos G, Kaklamanis PG. Behçet’s disease. Semin Arthritis Rheum. 1998;27:197–217. doi:10.1016/s0049-0172(98)80001-2.
  • Ohno S, Ohguchi M, Hirose S, Matsuda H, Wakisaka A, Aizawa M. Close association of HLA-Bw51 with Behçet’s disease. Arch Opthalmol. 1982;100:1455–1458. doi:10.1001/archopht.1982.01030040433013.
  • Mattioli I, Bettiol A, Saruhan-Direskeneli G, Direskeneli H, Emmi G. Pathogenesis of Behçet’s syndrome: genetic, environmental and immunological factors. Front Med (Lausanne). 2021;8:713052. doi:10.3389/fmed.2021.713052.
  • de Menthon M, Lavalley MP, Maldini C, Guillevin L, Mahr A. HLA-B51/B5 and the risk of Behçet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum. 2009;61:1287–1296. doi:10.1002/art.24642.
  • Nakamura J, Meguro A, Ishii G, et al. The association analysis between HLA-A*26 and Behçet’s disease. Sci Rep. 2019;9:4426. doi:10.1038/s41598-019-40824-y.
  • Mahmoudi M, Aslani S, Meguro A, et al. A comprehensive overview on the genetics of Behcet’s disease. Int Rev Immunol. 2022;41:84–106. doi:10.1080/08830185.2020.1851372.
  • Capittini C, Rebuffi C, Lenti MV, et al. Global meta-analysis on the association between Behcet syndrome and polymorphisms from the HLA class I (A, B, and C) and class II (DRB1, DQB1, and DPB1) genes. Dis Markers. 2021;2021:9348697. doi:10.1155/2021/9348697.
  • Su G, Zhong Z, Zhou Q, et al. Identification of novel risk loci for Behçet’s disease-related uveitis in a Chinese population in a genome-wide association study. Arthritis Rheumatol. 2022;74:671–681. doi:10.1002/art.41998.
  • Ortiz Fernández L, Coit P, Yilmaz V, et al. Genetic association of a gain-of-function IFNGR1 polymorphism and the intergenic region LNCAROD/DKK1 with Behçet’s disease. Arthritis Rheumatol. 2021;73:1244–1252. doi:10.1002/art.41637.
  • Rothlin CV, Carrera-Silva EA, Bosurgi L, Ghosh S. TAM receptor signaling in immune homeostasis. Annu Rev Immunol. 2015;33:355–391. doi:10.1146/annurev-immunol-032414-112103.
  • Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell. 2007;131:1124–1136. doi:10.1016/j.cell.2007.10.034.
  • Wium M, Paccez JD, Zerbini LF. The dual role of TAM receptors in autoimmune diseases and cancer: an overview. Cells. 2018;7:166. doi:10.3390/cells7100166.
  • Qin J, Li L, Zhang D, et al. Analysis of receptor tyrosine kinase genetics identifies two novel risk loci in GAS6 and PROS1 in Behçet’s disease. Sci Rep. 2016;6:26662. doi:10.1038/srep26662.
  • Mizushima Y. Recent research into Behçet’s disease in Japan. Int J Tissue React. 1998;10:59–65.
  • Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40( Databaseissue):D930–934. doi:10.1093/nar/gkr917.
  • GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–585. doi:10.1038/ng.2653.
  • Soejima Y, Kirino Y, Takeno M, et al. Changes in the proportion of clinical clusters contribute to the phenotypic evolution of Behçet’s disease in Japan. Arthritis Res Ther. 2021;23:49. doi:10.1186/s13075-020-02406-6.
  • Zou J, Luo JF, Shen Y, Cai JF, Guan JL. Cluster analysis of phenotypes of patients with Behçet’s syndrome: a large cohort study from a referral center in China. Arthritis Res Ther. 2021;23:45. doi:10.1186/s13075-021-02429-7.
  • Castoldi E, Hackeng TM. Regulation of coagulation by protein S. Curr Opin Hematol. 2008;15:529–536. doi:10.1097/MOH.0b013e328309ec97.
  • Dahlbäck B. Vitamin K-dependent protein S: beyond the protein C pathway. Semin Thromb Hemost. 2018;44:176–184. doi:10.1055/s-0037-1604092.
  • Schmidt T, Ben-Batalla I, Schultze A, Loges S. Macrophage-tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cell Mol Life Sci. 2012;69:1391–1414. doi:10.1007/s00018-011-0863-7.
  • Lemke G. Biology of the TAM receptors. Cold Spring Harb Perspect Biol. 2013;5:a009076. doi:10.1101/cshperspect.a009076.
  • van der Meer JH, van der Poll T, van ‘t Veer C. TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis. Blood. 2014;123:2460–2469. doi:10.1182/blood-2013-09-528752.
  • Bhattacharyya S, Zagórska A, Lew ED, et al. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe. 2013;14:136–147. doi:10.1016/j.chom.2013.07.005.
  • Xiong L, Catoire H, Dion P, et al. MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels. Hum Mol Genet. 2009;18:1065–1074. doi:10.1093/hmg/ddn443.
  • Ju H, Lim B, Kim M, et al. SERPINE1 intron polymorphisms affecting gene expression are associated with diffuse-type gastric cancer susceptibility. Cancer. 2010;116:4248–4255. doi:10.1002/cncr.25213.
  • Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11:274–286. doi:10.1038/tpj.2010.28.
  • Meguro A, Ishihara M, Petrek M, et al. Genetic control of CCL24, POR, and IL23R contributes to the pathogenesis of sarcoidosis. Commun Biol. 2020;3:465. doi:10.1038/s42003-020-01185-9.
  • Navarro S, Ricart JM, Medina P, et al. Activated protein C levels in Behçet’s disease and risk of venous thrombosis. Br J Haematol. 2004;126:550–556. doi:10.1111/j.1365-2141.2004.05072.x.
  • Alkaabi JK, Gravell D, Al-Haddabi H, Pathare A. Haemostatic parameters in patients with Behçet’s disease. Sultan Qaboos Univ Med J. 2014;14:e190–196. doi:10.1136/bjo.70.8.589.
  • Li JJ, Bickel PJ, Biggin MD. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ. 2014;2:e270. doi:10.7717/peerj.270.
  • Jovanovic M, Rooney MS, Mertins P, et al. Dynamic profiling of the protein life cycle in response to pathogens. Science. 2015;347:1259038. doi:10.1126/science.1259038.
  • Takeuchi M, Mizuki N, Meguro A, et al. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behçet’s disease susceptibility. Nat Genet. 2017;49:438–443. doi:10.1038/ng.3786.
  • Nalçaci M, Pekçelen Y. Antithrombin III, protein C and protein S plasma levels in patients with Behçet’s disease. J Int Med Res. 1998;26:206–208. doi:10.1177/030006059802600405.
  • Lenk N, Ozet G, Alli N, Coban O, Erbaşi S. Protein C and protein S activities in Behçet’s disease as risk factors of thrombosis. Int J Dermatol. 1998;37:124–125. doi:10.1046/j.1365-4362.1998.00114.x.
  • Demirer S, Sengül N, Yerdel MA, et al. Haemostasis in patients with Behçet’s disease. Eur J Vasc Endovasc Surg. 2000;19:570–574. doi:10.1053/ejvs.2000.1091.
  • Sengül N, Demirer S, Yerdel MA, et al. Comparison of coagulation parameters for healthy subjects and Behçet disease patients with and without vascular involvement. World J Surg. 2000;24:1584–1588. doi:10.1007/s002680010282.
  • Akarsu M, Demirkan F, Ozsan GH, et al. Increased levels of tissue factor pathway inhibitor may reflect disease activity and play a role in thrombotic tendency in Behçet’s disease. Am J Hematol. 2001;68:225–230. doi:10.1002/ajh.1186.
  • Lee YJ, Kang SW, Yang JI, et al. Coagulation parameters and plasma total homocysteine levels in Behcet’s disease. Thromb Res. 2002;106:19–24. doi:10.1016/s0049-3848(02)00085-3.
  • Espinosa G, Font J, Tàssies D, et al. Vascular involvement in Behçet’s disease: relation with thrombophilic factors, coagulation activation, and thrombomodulin. Am J Med. 2002;112:37–43. doi:10.1016/s0002-9343(01)01048-8.
  • Probst K, Fijnheer R, Rothova A. Endothelial cell activation and hypercoagulability in ocular Behçet’s disease. Am J Ophthalmol. 2004;137:850–857. doi:10.1016/j.ajo.2003.12.010.
  • Citirik M, Haznedaroglu IC, Teberik K, Soykan E, Zilelioglu O. Basic parameters of thrombophilia in ocular Behçet disease with posterior segment involvement. Br J Ophthalmol. 2009;93:1382–1386. doi:10.1136/bjo.2009.161018.
  • Guermazi S, Hamza M, Dellagi K. Protein S deficiency and antibodies to protein S in patients with Behçet’s disease. Thromb Res. 1997;86:197–204. doi:10.1016/s0049-3848(97)00063-7.
  • Ozatli D, Sayinalp N, Büyükaşik Y, et al. Unchanged global fibrinolytic capacity despite increased factor VIIa activity in Behçet’s disease: evidence of a prethrombotic state. Rheumatol Int. 2002;21:137–140. doi:10.1007/s00296-001-0143-1.
  • Kwon SR, Lim MJ, Park SG, Moon YS, Park W. Decreased protein S activity is related to the disease activity of Behcet’s disease. Rheumatol Int. 2006;27:39–43. doi:10.1007/s00296-006-0214-4.
  • Jeong H, Yoo IK, Choi S, et al. Thrombosis in Behçet’s disease: a Behçet’s disease patient with complete thrombotic obstruction of IVC and both iliac veins and decreased protein S activity. Rheumatol Int. 2013;33:1633–1635. doi:10.1007/s00296-011-2308-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.