282
Views
34
CrossRef citations to date
0
Altmetric
Articles

Giant permittivity of three phase polymer nanocomposites obtained by modifying hybrid nanofillers with polyvinylpyrrolidone

, ORCID Icon &
Pages 47-67 | Received 13 Feb 2017, Accepted 02 Jun 2017, Published online: 09 Jun 2017

References

  • Li Y, Shi Y, Cai F, et al. Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent. Compos Part A 2015;78:318–326.10.1016/j.compositesa.2015.08.031
  • Singh SK, Sirugudu RK, Murthy VRK, et al. Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mate Res Bull. 2013;48:1681–1687.
  • Li Y, Huang X, Hu Z, et al. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl Mater Interfaces. 2011;3:4396–4403.10.1021/am2010459
  • Yaqoob U, Uddin ASM, Chung GS. The effect of reduced graphene oxide on the dielectric and ferroelectric properties of PVDF–BaTiO3 nanocomposites. RSC Adv. 2016;6:30747–30754.10.1039/C6RA03155B
  • Li YC, Tjong SC, Li RKY. Dielectric properties of binary polyvinylidene fluoride/barium titanate nanocomposites and their nanographite doped hybrids. eXPRESS Poly Lett. 2011;5:526–534.10.3144/expresspolymlett.2011.51
  • Venkatragavaraj E, Satish B, Vinod PR, et al. Piezoelectric properties of ferroelectric PZT-polymer composites. J Phys D: Appl Phys. 2001;34:487–492.10.1088/0022-3727/34/4/308
  • Yu K, Wang H, Zhou Y, et al. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J Appl Phys. 2013;113:034105.10.1063/1.4776740
  • Fu J, Hou Y, Zheng M, et al. Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method. ACS Appl Mater Interfaces. 2015;7:24480–24491.10.1021/acsami.5b05344
  • Yu K, Wang H, Zhou Y, et al. Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J Am Ceram Soc. 2013;96:2519–2524.10.1111/jace.2013.96.issue-8
  • Yu K, Wang H, Zhou Y, et al. Enhanced electric breakdown strength and high energy density of barium titanate filled polymer nanocomposites. J Appl Phys. 2013;114:174107.10.1063/1.4829671
  • Luo H, Zhang D, Jiang C, et al. Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Appl Mater Interfaces. 2015;7:8061–8069.10.1021/acsami.5b00555
  • Zhang C, Chi1 Q, Dong J, et al. Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Sci Rep. 2016;6:33508.
  • Luo S, Yu S, Sun R, et al. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Appl Mater Interfaces. 2014;6:176–182.10.1021/am404556c
  • Zhang L, Xiao D, Ma J. Dielectric properties of PVDF/Ag/BaTiO3 composites. Ferroelectrics. 213;455:77–82.
  • Zhang X, Ma Y, Zhao C, et al. High dielectric performance composites with a hybrid BaTiO3/graphene as filler and poly(vinylidene fluoride) as matrix. ECS J Solid State Sci Technol. 2015;4(5):47–54.10.1149/2.0291505jss
  • Wang D, Zhou T, Zha JW, et al. Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J Mater Chem A. 2013;1:6162–6168.10.1039/c3ta10460e
  • Feng Y, Li WL, Wang JP, et al. Core–shell structured BaTiO3@carbon hybrid particles for polymer composites with enhanced dielectric performance. J Mater Chem A. 2015;3:20313–20321.10.1039/C5TA04777C
  • Dang ZM, Yao SH, Yuan JK, et al. Tailored dielectric properties based on microstructure change in BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase nanocomposites. J Phys Chem C. 2010;114:13204–13209.10.1021/jp103411c
  • Giant Permittivity in three-phase PVDF Composites. 2010 International Conference on Solid Dielectrics; Potsdam, Germany; 2010.
  • Jin Y, Xia N, Gerhardt RA. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation. Nano Energy. 2016;30:407–416.10.1016/j.nanoen.2016.10.033
  • Dang ZM, Fan LZ, Shen Y, et al. Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. Mater Sci Eng B. 2003;103:140–144.10.1016/S0921-5107(03)00177-6
  • Yao SH, Dang ZM, Jiang MJ, et al. BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase composites with high dielectric constant and low dielectric loss. Appl Phys Lett. 2008;93:182905.10.1063/1.3013833
  • Tambe PB, Bhattacharyya AR, Kamath S, et al. Structure property relationship studies in amine functionalized multiwall carbon nanotubes filled polypropylene composite fiber. Polym Eng Sci. 2012;52:1183–1194.10.1002/pen.v52.6
  • Saha M, Tambe P. Thermodynamic approach to enhance the dispersion of graphene in epoxy matrix and its effect on mechanical and thermal properties of epoxy nanocomposites. Compos Interfaces. 2016;23:255–272.10.1080/09276440.2016.1136515
  • Yang Y, Matsubara S, Xiong L, et al. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C. 2007;111:9095–9104.10.1021/jp068859b
  • Durge R, Kshirsagar RV, Tambe P. Effect of sonication energy on yield of graphene nanosheets by liquid phase exfoliation of graphite. Proc Eng. 2015;97:1457–1465.
  • Tambe PB, Bhattacharyya AR, Kulkarni AR. The influence of melt-mixing process conditions on electrical conductivity of polypropylene/multiwalled carbon nanotubes composites. J Appl Polym Sci. 2013;127:1017–1026.10.1002/app.v127.2
  • Thayumanavan N, Tambe PB, Joshi GM, et al. Effect of sodium alginate modification of graphene (by ‘anion-π’ type of interaction) on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites. Compos Interfaces. 2015;21:487–506.
  • Lakshmi NV, Tambe P. EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Compos Interfaces. 2017;24:861–882.10.1080/09276440.2017.1302202
  • Thayumanavan N, Tambe PB, Joshi GM. Effect of surfactant and sodium alginate modification of graphene on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites. Cell Chem Tech. 2015;49:69–80.
  • Sharma M, Singh MP, Srivastava C, et al. Poly(vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations. ACS Appl Mater Interfaces. 2014;6:21151–21160.10.1021/am506042a
  • Ohara S, Kondo A, Shimoda H, et al. Rapid mechanochemical synthesis of fine barium titanate nanoparticles. Mater Lett. 2008;62:2957–2959.10.1016/j.matlet.2008.01.083
  • Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–4814.10.1021/nn1006368
  • Wunderlich B. Thermal analysis. New York (NY): Academic Press; 1990.
  • Bodkhe S, Rajesh PSM, Kamle S, et al. Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay. J Polym Res. 2014;21:1–11.
  • Muralidhar C, Pillai PKC. Matrix – filler interactions and its influence on barium titanate (batio3)/polyvinylidene fluoride (pvdf) composite. Ferroelectrics. 1989;89:17–26.10.1080/00150198908017880
  • Chrissafis K, Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta. 2011;523:1–24.10.1016/j.tca.2011.06.010
  • Jonscher AK. The ‘universal’ dielectric response. Nature. 1977;267:673.10.1038/267673a0
  • Kumaran R, Dinesh kumar S, Balasubramanian N, et al. Enhanced electromagnetic interference shielding in a Au–MWCNT composite nanostructure dispersed PVDF thin films. J Phys Chem C. 2016;120:13771–13778.10.1021/acs.jpcc.6b01333
  • Wen F, Xu Z, Xia W, et al. High dielectric permittivity and low dielectric loss nanocomposites based on poly (VDF{TrFE{CTFE) and graphene nanosheets. J Adv Dielect. 2013;3:1350010–1350016.10.1142/S2010135X13500100
  • Luo B, Wang X, Tian E, et al. Dielectric enhancement in graphene/barium titanate nanocomposites. ACS Appl Mater Interfaces. 2016;8:3340–3348.10.1021/acsami.5b11231
  • Fan P, Wang L, Yang J, et al. Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology. 2012;23:365702–365710.10.1088/0957-4484/23/36/365702
  • Jiang MJ, Dang ZM, Xu HP. Giant dielectric constant and resistance-pressure sensitivity in carbon nanotubes/rubber nanocomposites with low percolation threshold. Appl Phys Lett. 2007;90:042914.10.1063/1.2432232
  • Luna A, Yuan J, Néri W, et al. Giant permittivity polymer nanocomposites obtained by curing a direct emulsion. Langmuir. 2015;31:12231–12239.10.1021/acs.langmuir.5b02318
  • Dang ZM, Wang L, Yin Y, et al. Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater. 2007;19:852–857.10.1002/(ISSN)1521-4095
  • Dey MA, De S, De A, et al. Giant dielectric constant in titania nanoparticles embedded in conducting polymer matrix. J Nanosci Nanotechnol. 2006;6:1427–1436.10.1166/jnn.2006.193

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.