497
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Preparation and electrochemical properties of MnO2/PANI-CNTs composites materials

, , , , , & show all
Pages 659-677 | Received 27 Mar 2018, Accepted 18 Sep 2018, Published online: 11 Oct 2018

References

  • Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294–303.
  • Arico AS, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366–377.
  • Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012;41:797–828.
  • Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor, J. Am Chem Soc. 2008;130:2730–2731.
  • Kandalkar SG, Dhawale DS, Kim CD, et al. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application, Synth. Met. 2010;160:1299–1302.
  • Mu JB, Chen B, Guo ZC, et al. Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale. 2011;3:5034–5040.
  • Sun X, Xie M, Wang GK, et al. Atomic layer deposition of TiO2 on graphene for supercapacitors, J. Electrochem Soc. 2012;159:364–369.
  • Tang H, Xiong M, Qu D, et al. Enhanced supercapacitive performance on TiO2@C coaxial nano-rod array through a bio-inspired approach. Nano Energy. 2015;15:75–82.
  • Yan DL, Guo ZL, Zhu GS, et al. MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. J. Power Sources. 2012;199:409–412.
  • Chen XY, Pomerantseva E, Banerjee P, et al. Ozone-based atomic layer deposition of crystalline V2O5 films for high performance electrochemical energy storage. Chem. Mater. 2012;24:1255–1261.
  • Kulal PM, Dubal DP, Lokhande CD, et al. Chemical synthesis of Fe2O3 thin films for supercapacitor application. J.Alloys Compd. 2011;509:2567–2571.
  • Patil UM, Salunkhe RR, Gurav KV. Chemically deposited nanocrystalline NiO thin films for supercapacitor application, Appl. Surf Sci. 2008;255:2603–2607.
  • Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater. 2004;16:3184–3190.
  • Toupin M, Brousse T, Bélanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide, Chem. Mater. 2002;14:3946–3952.
  • Zhi MJ, Xiang CC, Li JT, et al. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale. 2013;5:72–88.
  • Yu GH, Xie X, Pan LJ, et al. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy. 2013;2:213–234.
  • Zhang Y, Feng H, Wu X. Progress of electrochemical capacitor electrode materials: A review Int. J. Hydrogen Energy. 2009;34:4889–4899.
  • Wu Z, Zhou G, Yin L, et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 2012;1:107–131.
  • Li X, Wei B. Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films. Nano Energy. 2012;1:479–487.
  • Brown B, Cordova IA, Parker CB, et al. Optimization of active manganese oxide electrodeposits using graphenated carbon nanotube electrodes for supercapacitors, Chem. Mater. 2015;27(7):2430–2438.
  • Zhang H, Cao G, Wang Z, et al. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008;8:2664–2668.
  • Naoi K, Morita M. Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems. J Electrochem Soc. 2008;17(1):271–348.
  • Pan L, Qiu H, Dou C. Conducting polymer nanostructures: template synthesis and applications in energy storage. Int J Mol Sci. 2010;11(7):2636–2657.
  • Gallon BJ, Kojima RW, Kaner RB, et al. Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water. Angew Chem Int Edit. 2007;46(38):7251–7254.
  • Baker CO, Shedd B, Tseng RJ, et al. Size control of gold nanoparticles grown on polyaniline nanofibers for bistable memory devices. ACS Nano. 2011;5:3469–3474.
  • Mamedov AA, Kotov NA, Prato M, et al. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater. 2002;1:190–194.
  • ÓMullane AP, Dale SE, Day TM, et al. Formation of polyaniline/Pt nanoparticle composite films and their electrocatalytic properties. J Solid State Electr. 2006;10(10):792–807.
  • Yu GH, Xie X, Pan LJ, et al. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy. 2013;2(2):213–234.
  • Sathish M, Mitani S, Tomai T, et al. MnO2 assisted oxidative polymerization of aniline on graphene sheets: superior nanocomposite electrodes for electrochemical supercapacitors. J Mater Chem. 2011;21:16216–16222.
  • Asif M, Tan Y, Pan LJ. Synthesis of a highly efficient 3D grapheme-CNT-MnO2-PANI nanocomposite as a binder free electrode material for supercapacitors. Phys Chem Chem Phys. 2016;18:26854–26864.
  • Asif M, Tan Y, Pan LJ, et al. Improved performance of a MnO2@PANI nanocomposite synthesized on 3D graphene as a binder free electrode for supercapacitors. Rsc Adv. 2016;6:46100–46107.
  • Zhao X, Chen CY, Huang ZL, et al. Rational design of polyaniline/MnO2/carbon cloth ternary hybrids as electrodes for supercapacitors. Rsc Adv. 2015;5:66311–66317.
  • Yu L, Gan MY, Ma L, et al. Facile synthesis of MnO2/polyaniline nanorod arrays based on graphene and its electrochemical performance. Synthetic Met. 2014;198:167–174.
  • Xu CL, Bao SJ, Kong LB, et al. Highly ordered MnO2 nanowire array thin films on Ti/Si substrate as an electrode for electrochemical capacitor, J. Solid State Chem. 2006;179:1351–1355.
  • Hou Y, Cheng YW, Hobson T, et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 2010;10:2727–2733.
  • Misnon II, Jose R. Synthesis and electrochemical evaluation of PANI/δ-MnO2 electrode for high performing asymmetric supercapacitors. New J Chem. 2017;41(14):6574–6584.
  • Dhibar S, Bhattacharya P, Hatui G. Transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors. Acs Sustain Chem Eng. 2014;2(5):1114–1127.
  • Sumboja A, Foo CY, Wang X, et al. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Advanced Mater. 2013;25(ss):2809–2815.
  • Yu P, Li Y, Zhao X, et al. Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor. Langmuir. 2014;30:5306–5313.
  • Zhu ZZ, Wang GC, Sun MQ, et al. Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim Acta. 2011;56:1366–1372.
  • Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845−854.
  • Li HH, Zhang XD, Ding R, et al. Facile synthesis of mesoporous MnO2 microspheres for high performance AC//MnO2 aqueous hybrid supercapacitors [J]. Electrochim Acta. 2013;108:497–505.
  • Zhu G, Deng L, Wang J, et al. Hydrothermal preparation and the capacitance of hierarchical MnO2 nanoflower. Colloids Surf A. 2013;434:42–48.
  • Shimamoto K, Tadanaga K, Tatsumisago M. All-solid-state electrochemical capacitors using MnO2/carbon nanotube composite electrode. Electrochim Acta. 2013;109:651–655.
  • Li L, Hu ZA, An N, et al. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J Phys Chem C. 2014;118(40):22865–22872.
  • Pang SC, Anderson MA, Chapman TW, et al. Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol gel derived and electrodeposited manganese dioxide. J Electrochem Soc. 2000;147:444–450.
  • He Y, Du SS, Li HL, et al. MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes. J Solid State Electr. 2016;20(5):1459–1467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.