1,011
Views
92
CrossRef citations to date
0
Altmetric
Review Article

Recently emerging advancements in halloysite nanotubes polymer nanocomposites

ORCID Icon, , , &
Pages 751-824 | Received 08 Aug 2018, Accepted 08 Oct 2018, Published online: 01 Nov 2018

References

  • Yendluri R, Otto D, Villiers M, et al. Application of halloysite clay nanotubes as a pharmaceutical excipient. Int J Pharm. 2017;521:267–273.
  • Wu Y, Yang J, Gao H, et al. Folate-conjugated halloysite nanotubes, an efficient drug carrier, deliver doxorubicin for targeted therapy of breast cancer. ACS Appl. Nano Mater. 2018;1:595–608.
  • Long Z, Wu Y, Gao H, et al. Functionalization of halloysite nanotubes via grafting of dendrimer for efficient intracellular delivery of siRNA. Bioconjugate Chem. DOI:10.1021/acs.bioconjchem.8b00321
  • Nizar M, Hamzah M, Abd Razak S, et al. Thermal stability and surface wettability studies of polylactic acid/halloysite nanotube nanocomposite scaffold for tissue engineering studies. IOP Conf. Series: Materials Science and Engineering. 2018;318:Conference 1.
  • Bediako E, Nyankson E, Dodoo-Arhin D, et al. Modified halloysite nanoclay as a vehicle for sustained drug delivery. Heliyon. 2018;4:e00689.
  • Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym Int. 2010;59:574–582.
  • Lvov Y, Abdullayev E. Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci. 2013;38:1690–1719.
  • Cheng Z, Chang X, Liu Z, et al. High-performance PTFE nanocomposites based on halloysite nanotubes. Clay Miner. 2017;52:427–438.
  • Liu Y, Guan H, Zhang J, et al. Polydopamine-coated halloysite nanotubes supported AgPd nanoalloy: an efficient catalyst for hydrolysis of ammonia borane. Int J Hydrog Energy. 2018;43:2754–2762.
  • Alhuthali A, Low M. Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Mater Sci. 2013;48:4260–4273.
  • Farrokhi-Rad M, Mohammadalipour M, Shahrabi T. Electrophoretically deposited halloysite nanotubes coating as the adsorbent for the removal of methylene blue from aqueous solution. J Eur Ceram Soc. 2018;38:3650–3659.
  • Gladysz-Plaska A, Majdan M, Tarasiuk M, et al. The use of halloysite functionalized with isothiouronium salts as an organic/inorganic hybrid adsorbent for uranium (VI) ions removal. J Hazard Mater. 2018;354:133–144.
  • Liu Y, Cai Q, Li H, et al. Fabrication and characterization of mesoporous carbon nanosheets using halloysite nanotube and polypyrrole via a template-like method. J Appl Polym Sci. 2013;128:517–522.
  • Kurczewska J, Pecyna P, Ratajczak M, et al. Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharm J. 2017;25:911–920.
  • Ma W, Wu H, Higaki Y, et al. Halloysite nanotubes: green nanomaterial for functional organic‐inorganic nanohybrids. Chem Rec. 2018;18:986.
  • Yendluri R, Lvov Y, de Villiers M, et al. Paclitaxel encapsulated in halloysite clay nanotubes for intestinal and intracellular delivery. J Pharmaceut Sci. 2017;106:3131–3139.
  • Meng Y, Wang M, Tang M, et al. Preparation of robust super hydrophobic halloysite clay nanotubes via mussel-inspired surface modification. Appl Sci. 2017;7:1129.
  • Abdullayev E, Lvov Y. Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. J Mater Chem B. 2013;1(23):2894–2903.
  • Gaaz S, Sulong B, Kadhum H, et al. Impact of sulfuric acid treatment of halloysite on physico-chemic property modification. Materials. 2016;9:620.
  • Liu M, Jia Z, Jia D, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci. 2014;39:1498–1525.
  • Thakur V, Thakur M, Kessler M, editors. Handbook of composites from renewable materials. Vol. 7. p. 557–584. Beverly, USA: Scrivener Publishing LLC; 2017.
  • Suh J. Use of natural halloysite as a functional cosmetics carrier. Econ Environ Geol. 2015;48:247–253.
  • Zhu X, Li H, Liu H, et al. Halloysite-based dopamine-imprinted polymer for selective protein capture. J Sep Sci. 2016;39:2431–2437.
  • Gaaz T, Sulong A, Kadhum H, et al. Surface improvement of halloysite nanotubes. Appl Sci. 2017;7:291.
  • Yang Y, Chen Y, Leng F, et al. Recent advances on surface modification of halloysite nanotubes for multifunctional applications. Appl Sci. 2017;7:1215.
  • Grimes W, Luo Y, McFarland A, et al. Bi-Functionalized clay nanotubes for anti-cancer therapy. Appl Sci. 2018;8:281.
  • Bertolino V, Cavallaro G, Milioto S, et al. Thermal properties of multilayer nanocomposites based on halloysite nanotubes and biopolymers. J Compos Sci. 2018;2:41.
  • Harris P. Carbon nanotube composites. Int Mater Rev. 2004;49:31–43.
  • Alakrach A, Noriman N, Dahham O, et al. The effects of tensile properties of PLA/HNTsZrO2 bionanocomposites. J Phys Conf Ser. 2018;1019:012066.
  • Liu M, Guo B, Du M, et al. Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnol. 2007;18:455703/1–9.
  • Modiri‐Delshad T, Khoobi M, Shabanian M, et al. Synthesis, thermal and combustion properties of new polyamide/amidoacid@Fe3O4 nanocomposite. Adv Polym Technol. 2018;37:559–565.
  • Vahabi H, Saeb M, Formela K, et al. Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant. Prog Org Coat. 2018;119:8–14.
  • Jena D, Sahoo P. Development of biodegradable cellulose‐g‐poly (butyl acrylate)/kaolin nanocomposite with improved fire retardancy and mechanical properties. J Appl Polym Sci. 2018;135:45968.
  • Qin H, Zhang S, Zhao C, et al. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer. 2005;46:8386–8395.
  • Wei P, Tian G, Yu H, et al. Synthesis of a novel organic–inorganic hybrid mesoporous silica and its flame retardancy application in PC/ABS. Polym Degrad Stab. 2013;98:1022–1029.
  • Boonkongkaew M, Sirisinha K. Halloysite nanotubes loaded with liquid organophosphate for enhanced flame retardancy and mechanical properties of polyamide 6. J Mater Sci. 2018;53:10181.
  • Zheng T, Xiuyuan L. Loading an organophosphorous flame retardant into nanotubes for modifying UV-curable epoxy resin. RSC Adv. 2016;6:57122–57130.
  • Joshi A, Null R, Graham S, et al. Enhanced flame retardancy of latex coating doped with clay nanotubes. J Coat Technol Res. 2016;13:535.
  • Yah WO, Takahara A, Lvov YM. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc. 2012;134:1853–1859.
  • Pierchala M, Makaremi M, Tan H, et al. Nanotubes in nanofibers: antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. Appl Clay Sci. 2018;160:95–105.
  • Kadam A, Jang J, Jee S, et al. Chitosan-functionalized supermagnetic halloysite nanotubes for covalent laccase immobilization. Carbohydr Polym. 2018;194:208–216.
  • Kausar A. Review on Polymer/Halloysite nanotube nanocomposite. Polym Plast Technol Eng. 2018;57:548–564.
  • Sun L, Boyer B, Grimes R, et al. Drug coated clay nanoparticles for delivery of chemotherapeutics. Curr Nanosci. 2016;12:207–214.
  • Wilson IR. Kaolin and halloysite deposits of China. Clay Miner. 2004;39:1–15.
  • Wilson IR, Santos HD, Santos PD. Kaolin and halloysite deposits of Brazil. Clay Miner. 2006;41:697–716.
  • Patterson SH, Murray HH Kaolin, refractory clay, ball clay, and halloysite in North America, Hawaii, and the Caribbean region. In: USGS professional paper 1306; 1984. p. 56.
  • Huang J, Tang Z, Zhang X, et al. Chapter 21 - halloysite polymer nanocomposites. In: Yuan P, Thill A, Bergaya F, editors. Developments in clay science. Elsevier; 2016. Vol. 7, p.509–553.
  • Lvov Y, Wang W, Zhang L, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater. 2016;28:1227–1250.
  • Patel S, Jammaladaka U, Sun L, et al. Sustained release of antibacterial agents from doped halloysite nanotubes. Bioengineering. 2016;3:1.
  • Andreia F, Peixoto F, Pereira C, et al. Physiochemical characterization of organosilylated halloysite clay nanotubes. Microporous Mesoporous Mater. 2016;219:145–154.
  • Fakhrullina I, Akhatova S, Lvov Y, et al. Toxicity of halloysite clay nanotubes in vivo: A Caenorhabditis elegans study. Environ Sci Nano. 2015;2:54–59.
  • Lvov YM, DeVillers MM, Fakhrullin RF. The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv. 2016;13:977–986.
  • Panariti A, Miserocchi G, Rivolta I. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl. 2012;5:87–100.
  • Healy A, Waldron C, Geever L, et al. Degradable nanocomposites for fused filament fabrication applications. J Manuf Mater Process. 2018;2:29.
  • Massaro M, Cavallaro G, Colletti C, et al. Chemical modification of halloysite nanotubes for controlled loading and release. J Mater Chem B. 2018;6:3415–343310.
  • Shankar S, Kasapis S, Rhim J. Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles. Int J Biol Macromol. 2018;118 Part B:1824–1832.
  • Terzopoulou Z, Papageorgiou D, Papageorgiou G, et al. Effect of surface functionalization of halloysite nanotubes on synthesis and thermal properties of poly (ε-caprolactone). J Mater Sci. 2018;53:6519–6541.
  • Maleki A, Hajizadeh Z, Firouzi-Haji R. Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Microporous and Mesoporous Mater. 2018;259:46–53.
  • Wan X, Zhan Y, Zeng G, et al. Nitrile functionalized halloysite nanotubes/poly (arylene ether nitrile) nanocomposites: interface control, characterization, and improved properties. Appl Surf Sci. 2017;393:1–10.
  • Arat R, Uyanik N. Study of the morphological and thermal properties of polystyrene nanocomposites based on modified halloysite nanotubes with styrene-maleic anhydride copolymers. Mater Today Commun. 2017;13:255–262.
  • Sahnoune M, Taguet A, Otazaghine B, et al. Effects of functionalized halloysite on morphology and properties of polyamide 11/SEBS-g-MA blends. Eur Polym J. 2017;90:418–430.
  • Massaro M, Amorati R, Cavallaro G, et al. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B. 2016;140:505–513.
  • Sadjadi S, Atai M. Ternary hybrid system of halloysite nanotubes, polyacrylamides and cyclodextrin: an efficient support for immobilization of Pd nanoparticles for catalyzing coupling reaction. Appl Clay Sci. 2018;153:78–89.
  • Huy Y, Chen J, Li X, et al. Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in vitro and in-vivo studies. Nanotechnology. 2017;28:375101.
  • Leporatti S. Halloysite clay nanotubes as nano-bazookas for drug delivery. Polym Int. 2017;66:1111–1118.
  • Chen Y, Murphy A, Scholz D, et al. Surface‐modified halloysite nanotubes reinforced poly(lactic acid) for use in biodegradable coronary stents. J Appl Polym Sci. 2018;135:46521.
  • Ames L, Sand B. Halloysite formed in a calcareous hot-spring environment. Clay Miner. 1957;6:378–385.
  • García J, García Rodríguez S, Kalytta A, et al. Study of natural halloysite from the dragon mine Utah (USA). Z Anorg Allg Chem. 2009;635:790–795.
  • Francisco L, de Paiva L, Aldeia W, et al. Characterization of non-c covalently functionalized halloysite. In: Li B., et al, eds. Characterization of minerals, metals, and materials 2018. In: TMS 2018. The minerals, metals and materials series. Cham: Springer; 2018.
  • Pandey G, Munguambe D, Tharmavaram M, et al. Halloysite nanotubes - An efficient nano-support for the immobilization of amylase. Appl Clay Sci. 2017;136:184–191.
  • Krishnaiah P, Ratnam C, Manickam S. Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Appl Clay Sci. 2017;135:583–595.
  • Yuan P, Southon D, Liu Z, et al. Functionalization of halloysite clay nanotubes by grafting with-aminopropyltriethoxysilane. J Phys Chem C. 2008;112:15742–15751.
  • Tang W, Guo X, Liu X, et al. Interconnected silicon nanoparticles originated from halloysite nanotubes through the magnesiothermic reduction: A high-performance anode material for lithium-ion batteries. Appl Clay Sci. 2018;162:499–506.
  • Lin J, Luo Y, Zhong B, et al. Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber. Appl Surf Sci. 2018;441:798–806.
  • Yin B, Hakkarainen M. Core–shell nanoparticle-plasticizers for design of high-performance polymeric materials with improved stiffness and toughness. J Mater Chem. 2011;21:8670–8677.
  • Zhang J, Zhang D, Zhang A, et al. Poly (methyl methacrylate) grafted halloysite nanotubes and its epoxy acrylate composites by ultraviolet curing method. J Reinf Plast Compos. 2013;32:713–725.
  • Liu C, Luo F, Jia X, et al. Enhancement of mechanical properties of poly (vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube. Express Polym Lett. 2011;5:591–603.
  • Li C, Liu J, Qu X, et al. Polymer-modified halloysite composite nanotubes. J Appl Polym Sci. 2008;110:3638–3646.
  • Li C, Liu J, Qu X, et al. A general synthesis approach toward halloysite-based composite nanotube. J Appl Polym Sci. 2009;112:2647–2655.
  • Yah WO, Xu H, Soejima H, et al. Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J Am Chem Soc. 2012;134:12134–12137.
  • Fizir M, Wei L, Muchuan N, et al. QbD approach by computer aided design and response surface methodology for molecularly imprinted polymer based on magnetic halloysite nanotubes for extraction of norfloxacin from real samples. Talanta. 2018;184:266–276.
  • Ghezzi L, Spepi A, Agnolucci M, et al. Kinetics of release and antibacterial activity of salicylic acid loaded into halloysite nanotubes. Appl Clay Sci. 2018;160:88–94.
  • Paran R, Vahabi H, Ducos F, et al. Crystallization kinetics study of dynamically vulcanized PA6/NBR/HNTs nanocomposites by nonisothermal differential scanning calorimetry. J Appl Polym Sci. 2018;135:46488.
  • Papoulis D, Panagiotaras D, Tsigrou P, et al. Halloysite and sepiolite TiO2 nanocomposites: synthesis characterization and photocatalytic activity in three aquatic wastes. Mater Sci Semicond Process. 2018;85:1–8.
  • Codou A, Anstey A, Misra M, et al. Novel compatibilized nylon-based ternary blends with polypropylene and poly (lactic acid): morphology evolution and rheological behaviour. RSC Adv. 2018;8:15709–15724.
  • Kaze C, Tchakoute H, Mbakop T, et al. Synthesis and properties of inorganic polymers (geopolymers) derived from Cameroon-meta-halloysite. Ceram Int. 2018;44:18499–18508.
  • Waesateh K, Saiwari S, Ismail H, et al. Features of crystallization behavior of natural rubber/halloysite nanotubes composites using synchrotron wide-angle X-ray scattering. Int J Polym Anal Ch. 2018;23:3:260–270.
  • Buruga K, Kalathi J. A facile synthesis of halloysite nanotubes based polymer nanocomposites for glass coating application. J Alloys Compd. 2018;735:1807–1817.
  • Lvov M, Wang W, Zhang L, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater. 2016;28:1227–1250.
  • Zhihong D, Xinhua N, Xiequan L, et al. Strength model for composite ceramics with nano-interface and micro-interface. Compos Interfaces. 2018.: https://doi.org/10.1080/09276440.2018.1504194
  • Cunha D, Rodrigues N, Souza L, et al. Physicochemical and microbiological assessment of an experimental composite doped with triclosan-loaded halloysite nanotubes. Materials. 2018;11:1080.
  • Yin X, Wang L, Li S, et al. Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites. J Polym Eng. 2017;38:119–127.
  • Raji M, Mekhzoum M, Rodrigue D, et al. Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Compos Part B-Eng. 2018;146:106–115.
  • Chow W, Tham W, Poh B, et al. Mechanical and thermal oxidation behavior of poly (Lactic Acid)/halloysite nanotube nanocomposites containing N, N′-Ethylenebis (Stearamide) and SEBS-g-MA. J Polym Environ. 2018;26:2973–2982.
  • Mishra R, Rai J. Compatibilizing effect of halloysite nanotubes on polyetherimide/silicone rubber blend based nanocomposites. Polym Plast Technol Eng. 2018;1–7.
  • Jenifer A, Rasana N, Jayanarayanan K. Synergistic effect of the inclusion of glass fibers and halloysite nanotubes on the static and dynamic mechanical, thermal and flame retardant properties of polypropylene. Mater Res Express. 2018;5:6.
  • Raee E, Kaffashi B. Biodegradable polypropylene/thermoplastic starch nanocomposites incorporating halloysite nanotubes. J Appl Polym Sci. 2017;135:45740.
  • Kaygusuz I, Kaynak C. Influences of halloysite nanotubes on crystallization behaviour of polylactide. Plast Rubber Compos. 2018;44:41–49.
  • Kubade P, Tambe P. Influence of surface modification of halloysite nanotubes and its localization in PP phase on mechanical and thermal properties of PP/ABS blends. Compos Interfaces. 2017;24:469–487.
  • Guo S, Zhao K, Feng Z, et al. High performance liquid crystalline bionanocomposite ionogels prepared by in situ crosslinking of cellulose/halloysite nanotubes/ionic liquid dispersions and its application in supercapacitors. Appl Surf Sci. 2018;455:599–607.
  • Asempour F, Akbari S, Bai D, et al. Improvement of stability and performance of functionalized halloysite nano tubes-based thin film nanocomposite membranes. J Memb Sci. 2018;563:470–480.
  • Zhu G, Wang X, Jiang Y, et al. In situ construction of dual-noncovalent bonding to prepare enhanced carbon nanotubes/poly (methyl methacrylate) nanocomposites. Compos Sci Technol. 2018;155:58–63.
  • Belmar L, Toledo L, Sanchez S, et al. Fluorescent nanotubes in PHEMA hydrogels: visualizing aggregation and distribution by con-focal fluorescence microscopy. Mater Today Commun. 2018;16:285–292.
  • Song K, Polak R, Chen D, et al. Spray-coated halloysite–epoxy composites: A means to create mechanically robust, vertically aligned nanotube composites. ACS Appl Mater Interfaces. 2016;8:20396–20406.
  • Liang X, Qin L, Wang J, et al. Facile construction of long-lasting antibacterial membrane by using an orientated halloysite nanotubes interlayer. Ind Eng Chem Res. 2018;57:3235–3245.
  • Wang F, Zhang X, Ma Y, et al. Synthesis of HNTs@PEDOT composites via in situ chemical oxidative polymerization and their application in electrode materials. Appl Surf Sci. 2018;427 Part: A:1038–1045.
  • Sun X, Long Y, Wang P, et al. Preparation of conducting halloysite/polyaniline coaxial tubular nanocomposites in the presence of decorating halloysite as in situ dopant. React Funct Polym. 2012;72:323–328.
  • Murali R, Padaki M, Matsuura T, et al. Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Sep Purif Technol. 2014;132:187–194.
  • Xue Y, Niu M, Gong R, et al. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano. 2015;9:1600–1612.
  • Bugatti V, Vertuccio L, Viscusi G, et al. Antimicrobial membranes of bio-based PA 11 and HNTs filled with lysozyme obtained by an electrospinning process. J Nanomater. 2018;8:139.
  • Pavlinakova V, Fohlerova Z, Pavliak D, et al. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Mater Sci Eng C Mater Biol Appl. 2018;91:94–102.
  • Lee W, Li J, Chen X, et al. Electrospun poly(vinyl alcohol) composite nanofibers with halloysite nanotubes for the sustained release of sodium d-pantothenate. J Appl Polym Sci. 2015;133:42900.
  • Zhang L, Wang Z, Xiao Y, et al. Electrospun PEGylated PLGA nanofibers for drug encapsulation and release. Mater Sci Eng C Mater Biol Appl. 2018;91:255–262.
  • Filippov A, Petrova D, Falina I, et al. Transport asymmetry of novel bi-Layer hybrid perfluorinated membranes on the base of MF-4SC modified by halloysite nanotubes with platinum. Polymers. 2018;10:366.
  • Paran S, Naderi G, Ghoreishy M, et al. Multiscale modeling of polymer systems comprising nanotube-like inclusions by considering interfacial debonding under plastic deformations. Compos Struct. 2018;194:302–315.
  • Fermas W, Merijs M, Remo M, et al. Effect of Algerian halloysite on the mechanical and thermal properties of starch-grafted-polyethylene nanocomposites. Key Eng Mater. 2018;762:192–196.
  • Suppiah K, Teh L, Husseinsyah S, et al. Properties and characterization of carboxymethyl cellulose/halloysite nanotube bio-nanocomposite films: effect of sodium dodecyl sulfate. Polym Bull. 2018;75:018–2392-0.
  • Cheng Z, Ma L, Liu Z. A study on synergistic reinforcing effect of halloysite nanotubes/diatomite mixture-filled polymer (PP and PA6) composites. Plast Rubber Compos. 2018;47:249–257.
  • Hongwei Z, Yanqin L, Guoping Z, et al. Polyacrylamide/halloysite nanotubes composites: preparation and their effect on filled paper. Appita J. 2018;71:150–156.
  • Khalifa M, Mahendran A, Anandhan S. Durable, efficient, and flexible piezoelectric nanogenerator from electrospun PANi/HNT/PVDF blend nanocomposite. Polym Compos. 2018;https://doi.org/10.1002/pc.24916.
  • Sumer G, Abu Bakar S, Niaz A, et al. The high aspect ratio of nanoscale reinforcements enhances the tensile properties of a pure polymer matrix. Morphology and Tensile Properties of Thermoplastic Polyurethane-Halloysite Nanotube Nanocomposites. IJAME. 2015;12:2845–2856.
  • Boonkongkaew M, Hornsby P, Sirisinha K. Structural effect of secondary antioxidants on mechanical properties and stabilization efficiency of polyamide 6/halloysite nanotube composites during heat ageing. J Appl Polym Sci. 2017;134:45360.
  • Guo J, Chen X, Zhang Y. Improving the mechanical and electrical properties of ceramizable silicone rubber/halloysite composites and their ceramic residues by incorporation of different borates. Polymers. 2018;10:388.
  • Gorrasi G, Bugatti V, Ussia M, et al. Halloysite nanotubes and thymol as photo protectors of biobased polyamide 11. Polym Degrad Stab. 2018;152:43–51.
  • Jager M, Zabihi O, Ahmadi M, et al. Nano-enhanced interface in carbon fibre polymer composite using halloysite nanotubes. Compos Part A Appl Sci Manuf. 2018;109:115–123.
  • Bouaziz R, Prashantha K, Roger F. Thermomechanical modeling of halloysite nanotube-filled shape memory polymer nanocomposites. Mech Adv Mater Struc. 2018;1–9.
  • Boonkongkaew M, Sirisinha K. Halloysite nanotubes loaded with liquid organophosphate for enhanced flame retardancy and mechanical properties of polyamide 6. J Mater Sci. 2018;53:10181.
  • Maedeh G, Vahid H, Shahrooz Z. Fabrication and characterization of polymer-ceramic nanocomposites containing drug loaded modified halloysite nanotubes. J Biomed Mater Res Part A. 2018;106A:1276–1287.
  • Yu D, Wang J, Hu W, et al. Preparation and controlled release behavior of halloysite/2-mercaptobenzothiazole nanocomposite with calcined halloysite as nanocontainer. Mater Design. 2017;129:10.
  • Yamina A, Fizir M, Itatahine A, et al. Preparation of multifunctional PEG-graft-halloysite nanotubes for controlled drug release, tumor cell targeting, and bio-imaging. Colloids Surf B Biointerfaces. 2018;170:322–329.
  • Sengel S, Sahiner M, Aktas N, et al. Halloysite-carboxymethyl cellulose cryogel composite from natural sources. Appl Clay Sci. 2017;140:66–74.
  • Cao X, Zhou X, Weng G. Nanocavitation in silica filled styrene butadiene rubber regulated by varying silica rubber interfacial bonding. Polym Adv Technol. 2018;29:1779–1787.
  • Chen L, Jia Z, Guo X, et al. Functionalized HNTs nanocluster vulcanized natural rubber with high filler-rubber interaction. Chem Eng J. 2018;336:748–756.
  • Tully J, Yendluri R, Lvov Y. Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules. 2015;17:615–621.
  • Keeney M, Jiang Y, Yamane M, et al. Nanocoating for biomolecule delivery using layer-by-layer self-assembly. J Mater Chem B. 2017;3:8757–8770.
  • Gaaz T, Kadhum A, Michael P, et al. Unique halloysite nanotubes–polyvinyl alcohol–polyvinyl pyrrolidone composite complemented with physico–chemical characterization. Polymers. 2017;9:207.
  • Mingliang D, Baochun G, Demin J. Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). Eur Polym J. 2006;6:1362–1369.
  • Li X, Tan D, Xie L, et al. Effect of surface property of halloysite on the crystallization behavior of PBAT. Appl Clay Sci. 2018;157:218–226.
  • Chen H-B, Wang Y-Z, Schiraldi D. Preparation and flammability of poly (vinyl alcohol) composite aerogels. ACS Appl Mater Inter. 2014;6:6790–6796.
  • Lecouvet B, Sclavons M, Bourbigot S, et al. Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polym Degrad Stab. 2013;98:1993–2004.
  • Wang B, Huang H. Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites. Polym Degrad Stab. 2013;9:1601–1608.
  • Vahabi H, Jouyandeh M, Cochez M, et al. Short-lasting fire in partially and completely cured epoxy coatings containing expandable graphite and halloysite nanotube additives. Prog Org Coat. 2018;123:160–167.
  • Gibson A, Wan-Jusoh W, Kotsikos G. A propane burner test for passive fire protection (PFP) formulations containing added halloysite, carbon nanotubes and graphene. Polym Degrad Stab. 2018;148:86–94.
  • Gillani Q, Ahmad F, Melor P, et al. A synergy study of zinc borate in halloysite nano-tube reinforced, siloxane epoxy base intumescent fire resistive coatings. Materialwiss Werkstofftech. 2018;49:420.
  • Dumazert L, Rasselet D, Pang B, et al. Thermal stability and fire reaction of poly (butylene succinate) nanocomposites using natural clays and FR additives. Polym Adv Technol. 2018;29:69–83.
  • Zhang Z, Xu W, Yuan L, et al. Flame retardant cyanate ester resin with suppressed toxic volatiles based on environmentally friendly halloysite nanotube/graphene oxide hybrid. J Appl Polym Sci. 2018;135:46587.
  • Batistella M, Sonnier R, Otazaghine B, et al. Interactions between kaolinite and phosphinate-based flame retardant in polyamide 6. Appl Clay Sci. 2018;157:248–256.
  • Sun W, Tang W, Gu X, et al. Synergistic effect of kaolinite/halloysite on the flammability and thermostability of polypropylene. J Appl Polym Sci. 2018;135:46507.
  • Gillani F, Ahmad F, Mutalib M, et al. Effects of halloysite nanotube reinforcement in expandable graphite based intumescent fire retardant coatings developed using hybrid epoxy binder system. Chin J Polym Sci. 2018;36:1286–1296.
  • Kim Y, Kwon S, Choi H, et al. Thermal, mechanical, and rheological characterization of polylactic acid/halloysite nanotube nanocomposites. J Macromol Sci B. 2016;55 Part B:680–692.
  • Kim M, Kim S, Kim T, et al. Mechanical and thermal properties of epoxy composites containing zirconium oxide impregnated halloysite nanotubes. Coatings. 2017;7:231.
  • Wang Z, Cheng Y, Yang M, et al. Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine. Compos Part B-Eng. 2018;140:83–90.
  • Chai H, Dong H, Wang Y, et al. Porous NiCo2S4-halloysite hybrid self-assembled from nanosheets for high-performance asymmetric supercapacitor applications. Appl Surf Sci. 2017;401:399–407.
  • Zhu Y, Chen P, Nie W, et al. Greatly improved oil-in-water emulsion separation properties of graphene oxide membrane upon compositing with halloysite nanotubes. Water Air Soil Pollut. 2018;229:94.
  • Massaro M, Amorati R, Cavallaro G, et al. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B. 2016;140:505–513.
  • Dong C, Zhang M, Xiang T, et al. Novel self-healing anticorrosion coating based on L-valine and MBT-loaded halloysite nanotubes. J Mater Sci. 2018;53:7793.
  • Adsul S, Raju K, Sarada B, et al. Evaluation of self-healing properties of inhibitor loaded nanoclay-based anticorrosive coatings on magnesium alloy AZ91D. Compos PART B-Eng. 2018;6 (3):299–308.
  • Buruga K, Kalathi J, Kim K, et al. Polystyrene-halloysite nano tube membranes for water purification. Ind Eng Chem. 2018;61:169–180.
  • Liu Z, Mi Z, Jin S, et al. The influence of sulfonated hyperbranched polyethersulfone-modified halloysite nanotubes on the compatibility and water separation performance of polyethersulfone hybrid ultrafiltration membranes. J Membr Sci Technol. 2018;557:13–23.
  • Hermawan A, Chang J, Pasbakhsh P, et al. Halloysite nanotubes as a fine grained material for heavy metal ions removal in tropical biofiltration systems. Appl Clay Sci. 2018;160:106–115.
  • Du P, Liu D, Yuan P, et al. Controlling the macroscopic liquid-like behaviour of halloysite-based solvent-free nanofluids via a facile core pretreatment. Appl Clay Sci. 2018;156:126–133.
  • Hong-Li L, Ning W, Xiang H, et al. Facile fabrication and characterization of novel three-dimensional halloysite nanotubes/graphene oxide composite aerogels for waste water treatment. Ferroelectrics. 2018;528(1):22–30.
  • Mishra G, Mukhopadhyay M. Enhanced antifouling performance of halloysite nanotubes (HNTs) blended poly (vinyl chloride) (PVC/HNTs) ultrafiltration membranes: for water treatment. Ind Eng Chem. 2018;63:366–379.
  • Hia I, Lam W, Chai S, et al. Surface modified alginate multicore microcapsules and their application in self-healing epoxy coatings for metallic protection. Mater Chem Phys. 2018;215:69–80.
  • Yang B, Xuan F, Wang Z, et al. Multi-functional interface sensor with targeted IFSS enhancing, interface monitoring and self-healing of GF/EVA thermoplastic composites. Compos Sci Technol. 2018;167:86–95.
  • Zeng G, Ye Z, He Y, et al. Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater. Chem Eng J. 2017;323:572–583.
  • Shakoor A, Ubaid F, Shahzad K, et al. Highly ordered mesoporous silica and halloysite nanotubes loaded with diethylenetriamine DETA for smart anti corrosion coatings. Foundation Annual Res Conf Proc. 2018;1:EEPD359.
  • Manasa S, Siva T, Sathiyanarayanan S, et al. Montmorillonite nanoclay-based self-healing coatings on AA 2024-T4. J Coat Technol Res. 2018;15:721.
  • Feng K, Hung G, Liu J, et al. Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes. Chem Eng J. 2018;331:744–754.
  • Karthikeyan P, Sathishkumar S, Pandian K, et al. Novel copper doped halloysite nano tube/silver-poly (pyrrole-co-3, 4-ethylenedioxythiophene) dual layer coatings on low nickel stainless steel for anti-corrosion applications. JSAMD. 2018;1:59–67.
  • Koivisto A, Bluhme A, Kling K, et al. Occupational exposure during handling and loading of halloysite nanotubes. A case study of counting nanofibers. NanoImpact. 2018;10:153–160.
  • Khunováa V, Pavliňákováb V, Škrátekd M, et al. Magnetic halloysite reinforced biodegradable nanofibres: new challenge for medical applications. AIP Conf Proc. 2018;1981:1.
  • Karekar E, Gondhalekar A, Chandre K, et al. Acoustic cavitation assisted preparation of poly (acrylic acid)-halloysite nanoclay hydrogel for removal of auramine O dye from effluent current. J Environ Eng. 2018;1:47–57.
  • Li G, Zha J, Niu M, et al. Bifunctional monomer molecularly imprinted sol-gel polymers based on the surface of magnetic halloysite nanotubes as an effective extraction approach for norfloxacin. Appl Clay Sci. 2018;162:409–417.
  • Hosseinzadeh H, Ramin S. Fabrication of starch-graft-poly (acrylamide)/graphene oxide/hydroxyapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution. Int J Biol Macromol. 2018;106:101–115.
  • Ilaria A, Luigi T, Francesco M, et al. Nanostructured biopolymer-based materials for regenerative medicine applications. Curr Org Chem. 2018;22:1193–1204.
  • Wahid F, Khan T, Hussain Z, et al. 30 - Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In: Inamuddin, Asiri AM, Mohammad A, Editor(s). Woodhead publishing series in biomaterials, applications of nanocomposite materials in drug delivery. Cambridge, UK: Woodhead Publishing; 2018. p. 701–735.
  • Ahmed S, Ali A, Sheikh J. A review on chitosan centered scaffolds and their applications in tissue engineering. Int J Biol Macromol. 2018;116:849–862.
  • Ahsan S, Thomas M, Reddy K, et al. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol. 2018;110:97–109.
  • Lihua L, Changren Z. Tissue engineering scaffolds derived from chitosan. Curr Org Chem. 2018;22:708–719.
  • Abdullah Z, Dong Y. Preparation and characterisation of poly (vinyl) alcohol (PVA)/starch (ST)/halloysite nanotube (HNT) nanocomposite films as renewable materials. J Mater Sci. 2018;53:3455–3469.
  • Rao K, Kumar A, Han S. Polysaccharide based hydrogels reinforced with halloysite nanotubes via polyelectrolyte complexation. Mater Lett. 2018;213:231–235.
  • Santos A, Ferreira C, Veiga F, et al. Halloysite clay nanotubes for life sciences applications: from drug encapsulation to bioscaffold. Adv Colloid Interfaces Sci. 2018;257:58–70.
  • Wei M, Zhang J, He H. Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohyd Polym. 2018;197:117–127.
  • Lvov M, Shchukin G, Mohwald H, et al. Halloysite clay nanotubes for controlled release of protective agents. ACS Nano. 2008;2:814–820.
  • Massaro M, Colletti G, Noto R, et al. Pharmaceutical properties of supramolecular assembly of co-loaded cardanol/triazole-halloysite systems. Int J Pharm. 2015;478:476–485.
  • Massaro M, Piana S, Colletti G, et al. Multicavity halloysite–amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells. J Mater Chem B. 2015;3:4074–4081.
  • Massaro M, Riela S, Baiamonte C, et al. Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules. RSC Adv. 2016;6:87935–88794.
  • Rawtani D, Pandey G, Tharmavaram M, et al. Development of a novel nanocarrierâ system based on halloysite nanotubes to overcome the complexation of ciprofloxacin with iron: an in vitro approach. Appl Clay Sci. 2017;150:293–302.
  • Gao M, Lu L, Wang X, et al. Preparation of a novel breviscapine-loaded halloysite nanotubes complex for controlled release of breviscapine. Mater Sci Eng C Mater Biol Appl. 2017;265:012011.
  • Dramou M, Zhang P, Sun C, et al. Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug. J Colloid Interface Sci. 2017;505:476–488.
  • Liu M, Zhu D, Guo T, et al. Toxicity of zearalenone on the intestines of pregnant sows and their offspring and alleviation with modified halloysite nanotubes. J Sci Food Agric. 2018;98:698–706.
  • Massaro M, Colletti C, Guernelli S, et al. Photoluminescent hybrid nanomaterials from modified halloysite nanotubes. J Mater Chem C. 2018;6:7377–7384.
  • Shi R, Niu Y, Gong M, et al. Antimicrobial gelatin-based elastomer nanocomposite membrane loaded with ciprofloxacin and polymyxin B sulfate in halloysite nanotubes for wound dressing. Mater Sci Eng C Mater Biol Appl C. 2018;87:128–138.
  • Kurczewska J, Cegowski M, Messyasz B, et al. Dendrimer-functionalized halloysite nanotubes for effective drug delivery. Appl Clay Sci. 2018;153:134–143.
  • Pal P, Kundu M, Maitra A, et al. Synergistic effect of halloysite nanotubes and MA-g-PE on thermo-mechanical properties of polycarbonate-cyclic olefin copolymer based nanocomposite. Polym Plast Technol Eng. 2016;55:141481–141488.
  • Qi R, Guo R, Zheng F, et al. Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly (lactic-co-glycolic acid) composite nanofibers. ‎Colloids Surf. B. 2013;110:148–155.
  • Ding X, Wang H, Chen W, et al. Preparation and antibacterial activity of copper nanoparticle/halloysite nanotube nanocomposites via reverse atom transfer radical polymerization. RSC Adv. 2014;4:41993–41996.
  • Abhinayaa R, Jeevitha G, Mangalaraj D, et al. Cytotoxic consequences of Halloysite nanotube/iron oxide nanocomposite and iron oxide nanoparticles upon interaction with bacterial, non-cancerous and cancerous cells. Colloids Surf. B. 2018;169:395–403.
  • [Cited 06 August 2018]. Available from: https://www.grandviewresearch.com/industry-analysis/halloysite-market
  • Xu X, La S, Wu C, et al. Curcumin polymer coated, self-fluorescent and stimuli-responsive multifunctional mesoporous silica nanoparticles for drug delivery. Micro Mesopor Mater. 2018;271:234–242.
  • Zhang L, Du W, Nautiyal A, et al. Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. China Mater. 2018;61:303.
  • Liu Y, Zhang X, Poyraz S, et al. One-step synthesis of multifunctional zinc-iron-oxide hybrid carbon nanowires by chemical fusion for supercapacitors and interfacial water marbles. ChemNanoMat. 2018;4:546–556.
  • Zhang L, Lu X, Zhang X, et al. All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler. Compos Sci Technol. 2018;167:285–293.
  • Zhang L, Liu Z, Lu X, et al. Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energy. 2016;26:550–557.
  • Li X, Zhao Z, Wang Y, et al. Highly efficient flame retardant, flexible, and strong adhesive intumescent coating on polypropylene using hyperbranched polyamide. Chem Eng J. 2017;324:237–250.
  • One-Step Synthesis and. Characterization of polyaniline nanofiber/silver nanoparticle composite networks as antibacterial agents. ACS Appl Mater Interfaces. 2014;22:20025–20034.
  • Liu Z, Wang J, Kushvaha V, et al. Poptube approach for ultrafast carbon nanotube growth. Chem. Commun. 2011;47:9912–9914.
  • Litao K, Jiachun D, Tiejun L, et al. One-step solution combustion synthesis of cobalt-nickel oxides/C/Ni/CNTs nanocomposites as electrochemical capacitors electrode materials. J. Power Sources. 2015;275:126–135.
  • Liu Z, Liu Y, Zhang L, et al. Controlled synthesis of transition metal/conducting polymer nanocomposites. Nanotechnology. 2012;23:33.
  • Idumah CI, Hassan A, Affam A. A review of recent developments in flammability of polymer nanocomposites. Rev Chem Eng. 2015;31:149–177.
  • Idumah CI, Hassan A. Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Syn Met. 2016;212:91–104.
  • Ci I, Hassan A. Recently emerging trends in thermal conductivity of polymer nanocomposites. Rev Chem Eng. 2016;32:413–457.
  • Idumah CI, Hassan A. Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites. J Polym Eng. 2016:36;9:877–889.
  • Idumah C, Hassan A. Emerging trends in graphene carbon based polymer nanocomposites and applications. Rev Chem Eng. 2016;32:223–264.
  • Idumah C, Hassan A. Hibiscus cannabinus fiber/PP based nano-biocomposites reinforced with graphene nanoplatelets. J Nat Fibers. 2017;14:691–706.
  • Idumah C, Hassan A. Emerging trends in eco-compliant, synergistic, and hybrid assembling of multifunctional polymeric bionanocomposites. Rev Chem Eng. 2016;32:305–361.
  • Idumah C, Hassan A, Bourbigot S. Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. J Anal Appl Pyrol. 2017;123:65–72.
  • Idumah C, Hassan A. Emerging trends in flame retardancy of biofibers, biopolymers, biocomposites, and bionanocomposites. Rev Chem Eng. 2015;32:115–148.
  • Garcia-Garcia D, Ferri J, Ripoll L, et al. Characterization of selectively etched halloysite nanotubes by acid treatment. Appl Surf Sci. 2017;422:616–625.
  • Garcia-Garcia D, Garcia-Sanoguera D, Fombuena V, et al. Improvement of mechanical and thermal properties of poly (3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Appl Clay Sci. 2018;162:487–498.
  • Barrientos-Ramarez S, Montes de Oca-Ramarez G, Ramos-Fernandez E, et al. Surface Modification of Natural Halloysite Clay Nanotubes with Aminosilanes. Application as Catalyst Supports in the Atom Transfer Radical Polymerization of Methyl Methacrylate. Appl Catal A-Gen. 2011;406:22–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.