230
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Theoretical and predictive modeling of interfacial thermal conductance and thermal conductivity in graphite flake/Al composites

ORCID Icon, , , , , & show all
Pages 101-114 | Received 14 Aug 2019, Accepted 02 Feb 2020, Published online: 11 Feb 2020

References

  • Qu XH, Zhang L, Wu M, et al. Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog Nat Sci. 2011;21(3):189–197.
  • Tan Z, Li Z, Fan G, et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties. Compos Part B. 2012;47:173-180.
  • Chu K, Jia C, Liang X, et al. Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance. Mater Des. 2009;30(10):4311–4316.
  • Molina J, Louis E. Anisotropy in thermal conductivity of graphite flakes–siC p/matrix composites: implications in heat sinking design for thermal management applications. Mater Charact. 2015;109:107–115.
  • Zhou C, Chen D, Zhang X, et al. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites. Phys Lett A. 2015;379(5):452–457.
  • Zhou C, Huang W, Chen Z, et al. In-plane thermal enhancement behaviors of Al matrix composites with oriented graphite flake alignment. Compos Part B. 2015;70(70):256–262.
  • Li W, Liu Y, Wu G. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting. Carbon. 2015;95:545–551.
  • Zhou C, Ji G, Chen Z, et al. Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications. Mater Des. 2014;63:719–728.
  • Chen JK, Huang IS. Thermal properties of aluminum–graphite composites by powder metallurgy. Compos Part B. 2013;44(1):698–703.
  • Che Z, Wang Q, Wang L, et al. Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration. Compos Part B. 2017;113:285–290.
  • Che Z, Li J, Wang Q, et al. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites. Compos Part A. 2018;107:164–170.
  • Beffort O. On the thermal and chemical stability of diamond during processing of Al/diamond composites by liquid metal infiltration (squeeze casting). Diamond Relat Mater. 2004;13(10):1834–1843.
  • Khalid F. Microstructure and interfacial characteristics of aluminium–diamond composite materials. Diamond Relat Mater. 2004;13(3):393–400.
  • Tan Z, Li Z, Fan G, et al. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater Des. 2012;47:160-166.
  • Tan Z, Li Z, Xiong DB, et al. A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites. Mater Des. 2014;55(6):257–262.
  • Xie G, Ju Z, Zhou K, et al. Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime. Npj Comput Mater. 2018;4(1):21.
  • Xie G, Ding D, Phonon Coherence ZG. Its effect on thermal conductivity of nanostructures. Adv Phys-X. 2018;3(1):719–754.
  • Xue C, Bai H, Tao PF, et al. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface. Mater Des. 2016;108:250–258.
  • Chen J, Ren S, He X, et al. Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering. Carbon. 2017;121(Supplement C):25–34.
  • Swartz E, Pohl R. Thermal boundary resistance. Rev Mod Phys. 1989;61(3):605–668.
  • Duda JC, Smoyer JL, Norris PM, et al. Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials. Appl Phys Lett. 2009;95(3):031912.
  • Gundrum BC, Cahill DG, Averback RS. Thermal conductance of metal-metal interfaces. Phys Rev B. 2005;72(24):35011.
  • Hiroshi H, Minoru T. Equivalent inclusion method for steady state heat conduction in composites. Int J Eng Sci. 1986;24(7):1159–1172.
  • Nan CW, Liu G, Lin YH, et al. Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett. 2004;85(16):3549.
  • Zhu Y, Bai H, Xue C, et al. Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface. RSC Adv. 2016;6(100):98190–98196.
  • Adams PM, Katzman HA, Rellick GS, et al. Characterization of high thermal conductivity carbon fibers and a self-reinforced graphite panel. Carbon. 1998;36(3):233–245.
  • Duda JC, Hopkins PE, Beechem TE, et al. Inelastic phonon interactions at solid–graphite interfaces. Superlattices Microstruct. 2010;47(4):550–555.
  • Liang X, Jia C, Chu K, et al. Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings. Rare Met. 2011;30(5):544–549.
  • Zheng H, Jagannadham K. Interface thermal conductance between metal films and copper. Metall Mater Trans A. 2014;45(5):2480–2486.
  • Lin Z, Zhigilei LV, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B. 2008;77(7):439–446.
  • Lengeler B, Wampler WR, Bourassa RR, et al. Precision measurements of cyclotron masses and fermi velocities in the noble metals by the de Haas-van Alphen effect. Phys Rev B. 1977;15(12):5493–5503.
  • Muñetón Arboleda D, JMJ S, Mendoza Herrera LJ, et al. Size-dependent complex dielectric function of Ni, Mo, W, Pb, Zn and Na nanoparticles.application to sizing. J Phys D: Appl Phys. 2016;49(7):075302.
  • Heiniger F, Bucher E, Muller J. Low temperature specific heat of transition metals and alloys. Phys Kondens Mater. 1966;5(4):243–284.
  • Tsunoda Y, Hamaguchi Y, Kunitomi N. Neutron scattering measurements in chromium near the néel temperature. J Phys Soc Jpn. 1969;32(2):394–399.
  • Gandini C, Lacquaniti V, Monticone E, et al. Correlation of critical temperatures and electrical properties in titanium films. Int J Mod Phys B. 2008;17(04&06):948–952.
  • Nakamura M, Matsumoto S, Hirano T. Elastic constants of MoSi 2 and WSi 2 single crystals. J Mater Sci. 1990;25(7):3309–3313.
  • Rorer DC, Onn DG, Meyer H. Thermodynamic properties of molybdenum in its superconducting and normal state. Phys Rev. 1965;138(6A):1661–1668.
  • Bezuglyi EV, Burma NG, Deineka EY, et al. Zero sound in normal and superconducting molybdenum. J Phys: Condens Matter. 1999;3(40):7867–7876.
  • Hills MJ, Hepburn ID, Bartlett J, et al. Thermal magnetoconductivity of tungsten below 6 k: combining the zero-, low- and high-field cases. J Low Temp Phys. 2015;178(1–2):18–34.
  • Jiang C. First-principles study of structural, elastic, and electronic properties of chromium carbides. Appl Phys Lett. 2008;92(4):889.
  • Medvedeva NI, Enyashin AN, Ivanovskii AL. Modeling of the electronic structure, chemical bonding, and properties of ternary silicon carbide Ti 3 SiC 2. J Struct Chem. 2011;52(4):785–802.
  • Gao F, He J, Wu E, et al. Hardness of covalent crystals. Phys Rev Lett. 2003;91(1):015502.
  • Holmquist TJ, Johnson GR. Response of silicon carbide to high velocity impact. J Appl Phys. 2002;91(9):5858–5866.
  • Smoyer JL, Duda JC, Norris PM, et al. Thermal boundary conductance between thin metal films and graphite substrates. ASME/JSME 2011 8th Thermal Engineering Joint Conference. Honolulu, Hawaii, USA: American Society of Mechanical Engineers; 2011. p. T30019-T-7.
  • Pettes MT, Thermal SL. Structural characterizations of individual single‐, double‐, and multi‐walled carbon nanotubes. Adv Funct Mater. 2010;19(24):3918–3925.
  • Gengler JJ, Shenogin SV, Bultman JE, et al. Limited thermal conductance of metal-carbon interfaces. J Appl Phys. 2012;112(9):902.
  • Shenogin S, Gengler J, Roy A, et al. Molecular dynamics studies of thermal boundary resistance at carbon–metal interfaces. Scr Mater. 2013;69(1):100–103.
  • Schmidt AJ, Collins KC, Minnich AJ, et al. Thermal conductance and phonon transmissivity of metal–graphite interfaces. J Appl Phys. 2010;107(10):104907.
  • Prasher R. Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys Rev B. 2008;77(7):075424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.