188
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Characterization of interlaminar shear properties of nanostructured unidirectional composites

, , ORCID Icon, , &
Pages 191-208 | Received 24 Nov 2019, Accepted 18 Mar 2020, Published online: 05 Apr 2020

References

  • Buckley JD, Edie DD. Carbon-carbon materials and composites. New Jersey (NJ): Noyes Publications; 1993.
  • Mallick PK. Fiber-reinforced composites: materials, manufacturing, and design. 3rd ed. Michigan (MI): CRC Press; 2007.
  • Fitzer E, Manocha LM. Carbon reinforcements and carbon/carbon composites. Germany: Springer; 1998.
  • Chaudhry M, Czekanski A, Zhu Z. Characterization of carbon nanotube enhanced interlaminar fracture toughness of woven carbon fiber reinforced polymer composites. Int J Mech Sci. 2017;131–132:480–489.
  • Njuguna J, Pielichowski K. Polymer nanocomposites for aerospace applications: properties. Adv Eng Mater. 2003;5(11):769–778.
  • Thostenson E, Li C, Chou T. Nanocomposites in context. Compos Sci Technol. 2005;65(3–4):491–516.
  • Fiedler B, Gojny FH, Wichmann MHG, et al. Fundamental aspects of nano-reinforced composites. Compos Sci Technol. 2006;66:3115–3125.
  • Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49(15):3187–3204.
  • Popov VN. Carbon nanotubes: properties and application. Mater Sci Eng R. 2004;43(3):61–102.
  • Zhou HW, Mishnaevsky L Jr., Yi HY, et al. Carbon fiber/carbon nanotube reinforced hierarchical composites: effect of CNT distribution on shearing strength. Compos Part B Eng. 2016;88:201–211.
  • Warrier A, Godara A, Rochez O, et al. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Compos Part A Appl Sci Manuf. 2010;41(4):532–538. .
  • Díez-Pascual AM, Naffakh M, Marco C, et al. Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: a review. Curr Opin Solid State Mater Sci. 2014;18(2):62–80. .
  • Garcia E, Wardle B, Johnhart A, et al. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Compos Sci Technol. 2008;68(9):2034–2041. .
  • Feng L, Li K, Si Z, et al. Compressive and interlaminar shear properties of carbon/carbon composite laminates reinforced with carbon nanotube-grafted carbon fibers produced by injection chemical vapor deposition. Mater Sci Eng A. 2015;626:449–457.
  • De Greef N, Zhang L, Magrez A, et al. Direct growth of carbon nanotubes on carbon fibers: effect of the CVD parameters on the degradation of mechanical properties of carbon fibers. Diam Relat Mater. 2015;51:39–48.
  • Fernández B, Arbelaiz A, Valea A, et al. A comparative study on the influence of epoxy sizings on the mechanical performance of woven carbon fiber-epoxy composites. Polym Compos. 2004;25(3):319–330. .
  • Ren P, Liang G, Zhang Z. Influence of epoxy sizing of carbon-fiber on the properties of carbon fiber/cyanate ester composites. Polym Compos. 2006;27(5):591–598.
  • American Society for Testing and Materials (ASTM). Standard test method for tensile strength and Young’s modulus of fibers. Pennsylvania: ASTM; 2014. Standard No. C1557-14.
  • American Society for Testing and Materials (ASTM). Standard test methods for properties of continuous filament carbon and graphite fiber tows. Pennsylvania: ASTM; 2000. Standard No. D4018-99.
  • Cota ML, Almeida SF, Rezende MC. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates. Compos Sci Technol. 2001;61:2101–2108.
  • American Society for Testing and Materials (ASTM). Standard test method for short-beam strength of polymer matrix composite materials and laminates. Pennsylvania: ASTM; 2016. Standard No. D2344/D2344M-16.
  • American Society for Testing and Materials (ASTM). Standard test method for mode i interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. Pennsylvania: ASTM; 2007. Standard No. D5528-01.
  • Steiner SA, Li R, Wardle BL. Circumventing the mechanochemical origins of strength loss in the synthesis of hierarchical carbon fibers. ACS Appl Mater Interfaces. 2013;5(11):4892–4903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.