200
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication and properties of the 6-aminocaproic acid-modified MXene-based PA6 nanocomposites

, &
Pages 529-541 | Received 16 Aug 2022, Accepted 16 Nov 2022, Published online: 22 Feb 2023

References

  • Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248–4253.
  • Ghidiu M, Lukatskaya MR, Zhao MQ, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516(7529):78–81.
  • Dillon AD, Ghidiu MJ, Krick AL, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv Funct Mater. 2016;26(23):4162–4168.
  • Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater. 2013;23(17):2185–2192.
  • Mashtalir O, Naguib M, Mochalin VN, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun. 2013;4(1):1716.
  • Vmh N, Huang H, Zhou K, et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J Mater Chem A. 2017;5(7):3039–3068.
  • Yu XF, Li YC, Cheng JB, et al. Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Inter. 2015;7(24):13707–13713.
  • Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):16098.
  • Khazaei M, Ranjbar A, Arai M, et al. Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C. 2017;5(10):2488–2503.
  • She ZW, Fredrickson KD, Anasori B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016;1(3):589–594.
  • Naguib M, Saito T, Lai S, et al. Ti 3 C 2 T x (MXene)–polyacrylamide nanocomposite films. RSC Adv. 2016;6(76):72069–72073.
  • Fu Z, Zhang H, Si C, et al. Mechanistic quantification of thermodynamic stability and mechanical strength for two-dimensional transition-metal carbides. J Phys Chem C. 2018;122(8):4710–4722.
  • Zhang H, Wang LB, Chen Q, et al. Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater Design. 2016;92:682–689.
  • Das P, Ganguly S, Saha A, et al. Carbon-dots-initiated photopolymerization: an in situ synthetic approach for MXene/poly(norepinephrine)/copper hybrid and its application for mitigating water pollution. Appl Mater Inter. 2021;13(26):31038–31050.
  • George SM, Kandasubramanian B. Advancements in MXene-polymer composites for various biomedical applications. Ceram Int. 2020;46(7):8522–8535.
  • Ganguly S, Das P, Saha A, et al. Mussel-inspired polynorepinephrine/mxene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance. Langmuir. 2022;38(12):3936–3950.
  • Borysiuk VN, Mochalin VN, Gogotsi Y. Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: a Molecular dynamics study. Comput Mater Sci. 2018;143:418–424.
  • Yang JM, Chen YJ, Wang B, et al. Gradient structure silicone rubber composites for selective electromagnetic interference shielding enhancement and low reflection. Compos Sci Technol. 2022;229:109688.
  • Darwish MSA, Bakry A, Al-Harbi LM, et al. Core/Shell PA6@Fe3O4 nanofibers: magnetic and shielding behavior. J Disper Sci Technol. 2020;41(11):1711–1719.
  • Duan HJ, He PY, Zhu HX, et al. Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Compos B Eng. 2021;212:108690.
  • Toghchi MJ, Campagne C, Cayla A, et al. Electrical conductivity enhancement of hybrid PA6,6 composite containing multiwall carbon nanotube and carbon black for shielding effectiveness application in textiles. Synth Met. 2019;251:75–84.
  • Darwish MSA, Mostafa MH, Al-Harbi LM. Polymeric nanocomposites for environmental and industrial applications. Int J Mol Sci. 2022;23(3):1023.
  • Sancak E, Ozen MS, Erdem R, et al. PA6/Silver blends: investigation of mechanical and electromagnetic shielding behaviour of electrospun nanofibers. Tekst Konfeksiyon. 2018;28:229–235.
  • Yu H, Wang YH, Jing Y, et al. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small. 2019;15(25):e1901503.
  • Xue Q, Zhang H, Zhu M, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater. 2017;29(15):1604847.
  • Guo Z, Zhu X, Wang S, et al. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale. 2018;10(41):19579–19585.
  • Huang D, Xie Y, Wang J, et al. Demonstration of a white laser with V2C MXene-based quantum dots. Adv Mater. 2019;31:e1901117.
  • Li J, Li L, Xu L, et al. Mxene nanosheet stacks with tunable nanochannels for efficient molecular separation. Chem Eng J. 2022;427:132070.
  • Zheng S, Zhang C, Zhou F, et al. Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J Mater Chem A. 2019;7(16):9478–9485.
  • Ciou J, Li S, Lee P. Ti3C2 MXene paper for the effective adsorption and controllable release of aroma molecules. Small. 2019;15(38):1903281.
  • Zhang C, Anasori B, Seral-Ascaso A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater. 2017;29(36):1702678.
  • Cao MS, Song WL, Hou ZL, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon. 2010;48(3):788–796.
  • He P, Liu ZY, Mao GB, et al. Mxene films: toward high-performance electromagnetic interference shielding and supercapacitor electrode. Compos Part A Appl Sci Manuf. 2022;157:106935.
  • He P, Cao MS, Shu JC, et al. Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. Appl Mater Inter. 2019;11(13):12535–12543.
  • Zhang M, Cao MS, Shu JC, et al. Electromagnetic absorber convertin. Mater Sci Eng R. 2021;145:100627.
  • Hu H, Bai Z, Niu B, et al. Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics. J Mater Chem A. 2018;6(30):14876–14884.
  • Wang XH, Zhou YC. Stability and selective oxidation of aluminum in nano-laminate Ti3AlC2 upon heating in argon. Chem Mater. 2003;15(19):3716–3720.
  • Li X, Deng H, Li Z, et al. Graphene/Thermoplastic polyurethane nanocomposites: surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction. Compos Part A Appl Sci Manuf. 2015;68:264–275.
  • Bose S, Kuila T, Uddin ME, et al. In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer. 2010;51(25):5921–5928.
  • Liu W, Hu S, Liu G, et al. Creation of hierarchical structures within membranes by incorporating mesoporous microcapsules for enhanced separation performance and stability. J Mater Chem A. 2014;2(15):5267–5279.
  • Martin-Gallego M, Verdejo R, Lopez-Manchado MA, et al. Epoxy-graphene UV-cured nanocomposites. Polymer. 2011;52(21):4664–4669.
  • Yi Z, Yang J, Liu X, et al. Enhanced mechanical properties of poly(lactic acid) composites with ultrathin nanosheets of MXene modified by stearic acid. J Appl Polym Sci. 2020;137(17):48621.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.