168
Views
3
CrossRef citations to date
0
Altmetric
Articles

Predictors of Myopic Regression for Laser-assisted Subepithelial Keratomileusis and Laser-assisted in Situ Keratomileusis Flap Creation with Mechanical Microkeratome and Femtosecond Laser in Low and Moderate Myopia

ORCID Icon, , , , &
Pages 177-185 | Received 16 Jul 2018, Accepted 09 Dec 2019, Published online: 26 Dec 2019

References

  • Chayet AS, Assil KK, Montes M, Espinosa-Lagana M, Castellanos A, Tsioulias G. Regression and its mechanism after laser in situ keratomileusis in moderate and high myopia. Ophthalmology. 1998;105:1194–1199.
  • Hu DJ, Feder RS, Basti S, et al. Predictive formula for calculating the probability of LASIK enhancement. J Cataract Refract Surg. 2004;30(2):363–368. doi:10.1016/S0886-3350(03)00611-4.
  • Chen Y-I, Chien K-L, Wang I-J, et al. An interval-censored model for predicting myopic regression after laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2007;48:3516–3523. doi:10.1167/iovs.06-1044.
  • Lin MY, Chang DC, Hsu WM, Wang IJ. Cox proportional hazards model of myopic regression for laser in situ keratomileusis flap creation with a femtosecond laser and with a mechanical microkeratome. J Cataract Refract Surg. 2012;38:992–999. doi:10.1016/j.jcrs.2012.01.025.
  • Qi H, Hao Y, Xia Y, Chen Y. Regression-related factors before and after laser in situ keratomileusis. Ophthalmology. 2006;220(4):272–276. doi:10.1159/000093083.
  • Albietz JM, Lenton LM, McLennan SG. Chronic dry eye and regression after laser in situ keratomileusis for myopia. J Cataract Refract Surg. 2004;30:675–684. doi:10.1016/j.jcrs.2003.07.003.
  • Lian J, Zhang Q, Ye W, Zhou D, Wang K. An analysis of regression after laser in situ keratomileusis for treatment of myopia. Zhou hua Yan Ke Za Zhi. 2002; 38(6):363–366.
  • Rajan MS, O’Brart D, Jaycock P, Marshall J. Effects of ablation diameter on long-term refractive stability and corneal transparency after photorefractive keratectomy. Ophthalmology. Oct, 2006;113(10):1798–1806. doi:10.1016/j.ophtha.2006.06.030.
  • Eleftheriadis H, Prandi B, Diaz-Rato A, Morcillo M, Sabater JB. The effect of flap thickness on the visual and refractive outcome of myopic laser in situ keratomileusis. Eye. 2005;19::1290–1296. doi:10.1038/sj.eye.6701775.
  • Flanagan GW, Binder PS. Role of flap thickness in laser in situ keratomileusis enhancement for refractive undercorrection. J Cataract Refract Surg. Jul, 2006;32(7):1129–1141. doi:10.1016/j.jcrs.2006.01.095.
  • Gazieva L, Beer MH, Nielsen K, Hjortdal J. A retrospective comparison of efficacy and safety of 680 consecutive LASIK treatments for high myopia performed with two generations of flying-spot excimer lasers. Acta Ophthalmol. 2011;89(8):729–733. doi:10.1111/j.1755-3768.2009.01830.x.
  • Coskunseven E, Kymionis GD, Grentzelos MA, Portaliou DM, Kolli S, Jankov MR 2nd. Femtosecond LASIK retreatment using side cutting only. J Refract Surg. Jan, 2012;28(1):37–41. doi:10.3928/1081597X-20110812-01.
  • Christiansen SM, Neuffer MC, Sikder S, Semnani RT, Moshirfar M. The effect of preoperative keratometry on visual outcomes after moderate myopic LASIK. Clin Ophthalmol. 2012;6:459–464. doi:10.2147/OPTH.S28808.
  • Lohmann CP, Reischl U, Marshall J. Regression and epithelial hyperplasia after myopic photorefractive keratectomy in a human cornea. J Cataract Refract Surg. May, 1999;25(5):712–715. doi:10.1016/S0886-3350(99)00014-0.
  • Kamiya K, Miyata K, Tokunaga T, Kiuchi T, Hiraoka T, Oshika T. Structural analysis of the cornea using scanning-slit corneal topography in eyes undergoing excimer laser refractive surgery. Cornea. Nov, 2004;23(8):S59–64. doi:10.1097/01.ico.0000136673.35530.e3.
  • Baek T, Lee K, Kagaya F, Tomidokoro A, Amano S, Oshika T. Factors affecting the forward shift of posterior corneal surface after laser in situ keratomileusis. Ophthalmology. Feb, 2001;108(2):317–320. doi:10.1016/S0161-6420(00)00502-9.
  • Miyata K, Tokunaga T, Nakahara M, et al. Residual bed thickness and corneal forward shift after laser in situ keratomileusis. J Cataract Refract Surg. 2004;30(5):1067–1072. doi:10.1016/j.jcrs.2003.09.046.
  • Pan CW, Cheng CY, Saw SM, Wang JJ, Wong TY. Myopia and age-related cataract: a systematic review and meta-analysis. Am J Ophthalmol. 2013;156:1021–1033. doi:10.1016/j.ajo.2013.06.005.
  • Saka N, Ohno-Matsui K, Shimada N, et al. Long-term changes in axial length in adult eyes with pathologic myopia. Am J Ophthalmol. Oct, 2010;150(4):562–568. doi:10.1016/j.ajo.2010.05.009.
  • Saka N, Moriyama M, Shimada N, et al. Changes of axial length measured by IOL master during 2 years in eyes of adults with pathologic myopia. Graefes Arch Clin Exp Ophthalmol. 2013;251(2):495–499. doi:10.1007/s00417-012-2066-9.
  • Igarashi A, Shimizu K, Kamiya K. Eight-year follow-up of posterior chamber phakic intraocular lens implantation for moderate to high myopia. Am J Ophthalmol. 2014;157(3):532–539. doi:10.1016/j.ajo.2013.11.006.
  • Langova K. Survival analysis for clinical studies. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2008;152:303–307. doi:10.5507/bp.2008.048.
  • Langova K. Survival analysis for clinical studies. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. Dec, 2008;152(2):303–307. doi:10.5507/bp.2008.048.
  • Kim JY, Kim MJ, Kim T-I, Choi H-J, Pak JH, Tchah H. A femtosecond laser creates a stronger flap than a mechanical microkeratome. Invest Ophthalmol Vis Sci. 2006;47:599–604. doi:10.1167/iovs.05-0458.
  • Knorz MC, Vossmerbaeumer U. Comparison of flap adhesion strength using the Amadeus microkeratome and the IntraLase iFS femtosecond laser in rabbits. J Refract Surg. 2008;24:875–878. doi:10.3928/1081597X-20081101-04.
  • Netto MV, Mohan RR, Medeiros FW, et al. Femtosecond laser and microkeratome corneal flaps: comparison of stromal wound healing and inflammation. J Refract Surg. 2007;23:667–676. doi:10.3928/1081-597X-20070901-05.
  • O’Brart DP, Corbett MC, Lohmann CP, Kerr Muir MG, Marshall J. The effects of ablation diameter on the outcome of excimer laser photorefractive keratectomy. A prospective, randomized, doubleblind study. Arch Ophthalmol. 1995;113:438–443. doi:10.1001/archopht.1995.01100040054026.
  • Shah SI, Hersh PS. Photorefractive keratectomy for myopia with a 6-mm beam diameter. J Refract Surg. 1996;12:341–346.
  • Russell P, Michael M, Tzahi S, Gur M, Igor K. Myopic laser in situ keratomileusis retreatment: incidence and associations. J Cataract Refract Surg. 2016;42::1408–1414. doi:10.1016/j.jcrs.2016.07.032.
  • Gauthier CA, Epstein D, Holden BA, et al. Epithelial alterations following photorefractive keratectomy for myopia. J Refract Surg. 1995;11:113–118.
  • Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H. Factors affecting epithelial hyperplasia after photorefractive keratectomy. J Cataract Refract Surg. 1997;23(7):1042–1050. doi:10.1016/S0886-3350(97)80078-8.
  • Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H. Role of epithelial hyperplasia in regression following photorefractive keratectomy. Br J Ophthalmol. 1996;80(6):545–548. doi:10.1136/bjo.80.6.545.
  • Hori-Komai O, Toda I, Asano-Kato N, Ito M, Yamamoto T, Tsubota K. Comparison of LASIK using the NIDEK EC-5000 Optimized Aspheric Transition Zone (OATz) and conventional ablation profile. J Refract Surg. 2006;22:546–555. doi:10.3928/1081-597X-20060601-06.
  • Kosaki R, Maeda N, Hayashi H, Fujikado T, Okamoto S. Effect of NIDEK optimized aspheric transition zone ablation profile on higher order aberrations during LASIK for myopia. J Refract Surg. Apr, 2009;25(4):331–338. doi:10.3928/1081597X-20090401-06.
  • Vongthongsri A, Phusitphoykai N, Tungsiriput T. Laser in situ keratomileusis for high myopia using a small ablation zone and large aspheric transition zone. J Refract Surg. 2004;20(5Suppl):S669–73.
  • O’Brart DP, Corbett MC, Verma S, et al. Effects of ablation diameter, depth, and edge contour on the outcome of photorefractive keratectomy. J Refract Surg. 1996;12:50–60.
  • Steinert RF, Hersh PS. Spherical and aspherical photorefractive keratectomy and laser in-situ keratomileusis for moderate to high myopia: two prospective, randomized clinical trials. Summit technology PRK-LASIK study group. Trans Am Ophthalmol Soc. 1998;96:197–221. discussion 221–227.
  • Carney LG, Mainstone JC, Henderson BA. Corneal topography and myopia. A cross-sectional study. Invest Ophthalmol Vis Sci. 1997;38:311–320.
  • Horner DG, Soni PS, Vyas N, Himebaugh NL. Longitudinal changes in corneal asphericity in myopia. Optom Vis Sci. Apr, 2000;77(4); 198–2. doi:10.1097/00006324-200004000-00012.
  • Strobbe E, Cellini M, Barbaresi U, Campos EC. Influence of age and gender on corneal biomechanical properties in a healthy Italian population. Cornea. 2014;33(9):968–972. doi:10.1097/ICO.0000000000000187.
  • Hyon JY, Shin YJ, Choi J, Kim DH, Chuck RS. Survival analysis of re-treatment after laser refractive corneal surgery in patients with myopia. J Refractive Surg. 2014;30:510–511. doi:10.3928/1081597X-20140711-01.
  • Allam RS, Khalil NM. Evaluation of sex differences in corneal hysteresis. Eur J Ophthalmol. 2015;25(5):391–395. doi:10.5301/ejo.5000572.
  • David VP, Stead RE, Vernon SA. Repeatability of ocular response analyzer metrics: a gender-based study. Optom Vis Sci. 2013;90(7):691–699. doi:10.1097/OPX.0b013e318297da45.
  • Narayanaswamy A, Chung RS, Wu RY, et al. Determinants of corneal biomechanical properties in an adult Chinese population. Ophthalmology. 2011;118(7):1253–1259. doi:10.1016/j.ophtha.2010.12.001.
  • Bullimore MA, Reuter KS, Jones LA, Mitchell GL, Zoz J, Rah MJ. The Study of Progression of Adult Nearsightedness (SPAN): design and baseline characteristics. Optom Vis Sci. 2006;83:594–604. doi:10.1097/01.opx.0000230274.42843.28.
  • National Research Council (U.S.). Myopia: Prevalence and Progression. Washington, DC: National Academy Press; Working Group on Myopia Prevalence and Progression; 1989.
  • Lee KE, Klein BE, Klein R, Wong TY. Changes in refraction over 10 years in an adult population: the beaver dam eye study. Invest Ophthalmol Vis Sci. 2002;43:2566–2571.
  • Saka N, Moriyama M, Shimada N, et al. Changes of axial length measured by IOL master during 2 years in eyes of adults with pathologic myopia. Graefes Arch Clin Exp Ophthalmol. 2013;251(2):495–499. doi:10.1007/s00417-012-2066-9.
  • Lim SA, Park Y, Cheong YJ, Na KS, Joo CK. Factors affecting long-term myopic regression after laser in situ keratomileusis and laser-assisted subepithelial keratectomy for moderate myopia. Korean J Ophthalmol. 2016;30(2):92–100. doi:10.3341/kjo.2016.30.2.92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.