181
Views
7
CrossRef citations to date
0
Altmetric
Articles

The EEG indicators of the dynamic properties of sleep–wake regulating processes: comparison of the changes occurring across wake–sleep transition with the effects of prolonged wakefulness

Pages 621-643 | Received 21 Jun 2012, Accepted 13 Aug 2012, Published online: 19 Sep 2012

References

  • Achermann , P and Borbély , AA . 1990 . Simulation of human sleep: ultradian dynamics of electroencephalographic slow-wave activity . J Biol Rhythms , 5 : 141 – 157 .
  • Achermann , P and Borbély , AA . 1994 . Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process . Biol Cybern , 71 : 115 – 121 .
  • Aeschbach , D and Borbély , AA . 1993 . All-night dynamics of the human sleep EEG . J Sleep Res , 2 : 70 – 81 .
  • Aeschbach , D , Matthews , JR , Postolache , TT , Jackson , MA , Giesen , HA and Wehr , TA . 1999 . Two circadian rhythms in the human electroencephalogram during wakefulness . Am J Physiol Regulatory Integrative Comp Physiol , 277 : R1771 – R1779 .
  • Åkerstedt , T and Gillberg , M . 1990 . Subjective and objective sleepiness in the active individual . Int J Neurosci , 52 : 29 – 37 .
  • Borbély , AA . 1982 . A two process model of sleep regulation . Hum Neurobiol , 1 : 195 – 204 .
  • Boutrel , B and Koob , GF . 2004 . What keeps us awake: the neuropharmacology of stimulants and wake-promoting medications . Sleep , 27 : 1181 – 1194 .
  • Cajochen , C , Brunner , DP , Kräuchi , K , Graw , P and Wirz-Justice , A . 1995 . Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness . Sleep , 18 : 890 – 894 .
  • Chapotot , F , Jouny , C , Buguet , A and Brandenberger , G . 2000 . High frequency waking EEG: reflection of a slow ultradian rhythm in daytime arousal . Neuroreport , 11 : 2223 – 2227 .
  • Chapotot , F , Pigeau , R , Canini , F , Bourdon , L and Buguet , A . 2003 . Distinctive effects of modafinil and d-amphetamine on the homeostatic and circadian modulation of the human waking EEG . Psychopharmacology , 166 : 127 – 138 .
  • Corsi-Cabrera , M , Ramos , J and Meneses , S . 1989 . Effect of normal sleep and sleep deprivation on interhemispheric correlation during subsequent wakefulness in man . Electroencephalogr Clin Neurophysiol , 72 : 305 – 311 .
  • Daan , S , Beersma , DGM and Borbély , AA . 1984 . Timing of human sleep: recovery process gated by a circadian pacemaker . Am J Physiol Regulatory Integrative Comp Physiol , 246 : R161 – R178 .
  • De Gennaro , L , Ferrara , M and Bertini , M . 2001 . The boundary between wakefulness and sleep: quantitative electroencephalographic changes during the sleep onset period . Neuroscience , 107 : 1 – 11 .
  • Dijk , DJ and Czeisler , CA . 1995 . Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans . J Neurosci , 15 : 3526 – 3538 .
  • Donskaya , OG , Verevkin , EG and Putilov , AA . 2012 . The first and second principal components of the EEG spectrum as the indicators of sleepiness . Somnologie , 16 ( 2 ) : 69 – 79 .
  • Drapeau , C and Carrier , J . 2004 . Fluctuation of waking electroencephalogram and subjective alertness during a 25-hour sleep-deprivation episode in young and middle-aged subjects . Sleep , 27 : 55 – 60 .
  • Dumont , M , Macchi , MM , Carrier , J , Lafrance , C and Hébert , M . 1999 . Time course of narrow frequency bands in the waking EEG during sleep deprivation . Neuroreport , 10 : 403 – 407 .
  • Edgar , DM , Dement , WC and Fuller , CA . 1993 . Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep–wake regulation . J Neurosci , 13 : 1065 – 1079 .
  • Finelli , LA , Baumann , H , Borbely , AA and Achermann , P . 2000 . Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep . Neuroscience , 101 : 523 – 529 .
  • Folkard , S and Åkerstedt , T . 1992 . “ A three-process model of the regulation of alertness-sleepiness ” . In Sleep, arousal and performance: problems and promises , Edited by: Broughton , RJ and Ogilvie , R . 11 – 26 . Boston (MA) : Birkhluser .
  • Frigo , M and Johnson , SG . The design and implementation of FFTW3 . Proc IEEE . pp. 216 – 231 .
  • Kaiser , D . 2008 . Ultradian and circadian effects in electroencephalography activity . Biofeedback , 36 : 148 – 151 .
  • Lavie , P . 1989 . Ultradian rhythms in arousal: the problem of masking . Chronobiol Int , 6 : 21 – 28 .
  • Leproult , R , Colecchia , EF , Berardi , AM , Stickgold , R , Kosslyn , SM and Van Cauter , E . 2003 . Individual differences in subjective and objective alertness during sleep deprivation are stable and unrelated . Am J Physiol Regulatory Integrative Comp Physiol , 284 : R280 – R290 .
  • Lorenzo , I , Ramos , J , Arce , C , Guevara , MA and Corsi-Cabrera , M . 1995 . Effect of total sleep deprivation on reaction time and waking EEG activity in man . Sleep , 18 : 346 – 354 .
  • Makeig , S and Jung , TP . 1995 . Changes in alertness are a principal component of the variance in the EEG spectrum . Neuroreport , 7 : 213 – 216 .
  • Matousek , M and Petersen , IA . 1983 . A method for assessing alertness fluctuations in vigilance and the EEG spectrum . Electroencephalogr Clin Neurophysiol , 55 : 108 – 113 .
  • Merica , H and Fortune , RD . 2004 . State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity . Sleep Med Rev , 8 : 473 – 485 .
  • Merica , H and Fortune , RD . 2005 . Spectral power time-courses of human sleep EEG reveal a striking discontinuity at approximately 18 Hz marking the division between NREM-specific and wake/REM-specific fast frequency activity . Cereb Cortex , 15 : 877 – 884 .
  • Oken , BS and Salinsky , M . 1992 . Alertness and attention: basic science and electrophysiologic correlates . J Clin Neurophysiol , 9 : 480 – 494 .
  • Olbrich , E and Achermann , PJ . 2005 . Analysis of oscillatory patterns in the human sleep EEG using a novel detection algorithm . J Sleep Res , 14 : 337 – 346 .
  • Perlis , ML , Kehr , EL , Smith , MT , Andrews , PJ , Orff , H and Giles , DE . 2001 . Temporal and stagewise distribution of high frequency activity in patients with primary and secondary insomnia and in good sleeper control . J Sleep Res , 10 : 93 – 104 .
  • Pivik , RT and Harman , K . 1995 . A reconceptualization of EEG alpha activity as an index of arousal during sleep: all alpha activity is not equal . J Sleep Res , 4 : 131 – 137 .
  • Putilov , AA . 1995 . The timing of sleep modelling: circadian modulation of the homeostatic process . Biol Rhythm Res , 26 : 1 – 19 .
  • Putilov , AA . 2010 . Principal component structure of wake–sleep transition: quantitative description in multiple sleep latency tests . Somnologie , 14 : 234 – 243 .
  • Putilov , AA . 2011a . Prospects of using electroencephalographic signatures of the chronoregulatory processes for meaningful, parsimonious and quantitative description of the sleep–wake sub-states . Biol Rhythm Res , 42 : 181 – 207 .
  • Putilov , AA . 2011b . Principal components of electroencephalographic spectrum as markers of opponent processes underlying ultradian sleep cycles . Chronobiol Int , 28 : 287 – 299 .
  • Putilov , AA , Donskaya , OG and Verevkin , EG . 2012 . Quantification of sleepiness through principal component analysis of the EEG spectrum . Chronobiol Int , 29 ( 4 ) : 509 – 522 .
  • Putilov , AA , Donskaya , OG , Verevkin , EG and Putilov , DA . 2010 . Associations of waking EEG structure with chronotype and trototype of 130 sleep deprived individuals . Biol Rhythm Res , 41 : 113 – 136 .
  • Putilov , AA , Donskaya , OG , Verevkin , EG , Putilov , DA and Shtark , MB . 2009a . “ Chronotype, somnotype and trototype as the predictors of the time course of subjective and objective indexes of sleepiness in sleep deprived subjects ” . In Sleep deprivation: causes, effects and treatment , Edited by: Fulke , P and Vaughan , S . 95 – 142 . New York (NY) : Nova Science Publisher .
  • Putilov , AA , Donskaya , OG , Verevkin , EG and Shtark , MB . 2009b . Structuring the inter-individual variation in waking EEG can help to discriminate between the objective markers of sleep debt and sleep pressure . Somnologie , 13 : 72 – 88 .
  • Rechtschaffen , A and Kales , A , eds. 1968 . A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects , Los Angeles (CA) : UCLA Brain Information Service/Brain Research Institute .
  • Saper , CB , Chou , TC and Scammell , TE . 2001 . The sleep switch: hypothalamic control of sleep and wakefulness . Trends Neurosci , 24 : 726 – 731 .
  • Staner , L , Cornette , F , Maurice , D , Viardot , G , Le Bon , O , Haba , J , Staner , C , Luthringer , R , Muzet , A and Macher , JP . 2003 . Sleep microstructure around sleep onset differentiates major depressive insomnia from primary insomnia . J Sleep Res , 12 : 319 – 330 .
  • Strijkstra , AM , Beersma , DG , Drayer , B , Halbesma , N and Daan , S . 2003 . Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram . Neurosci Lett , 340 : 17 – 20 .
  • Torsvall , L and Åkerstedt , T . 1987 . Sleepiness on the job: continuously measured EEG changes in train drivers . Electroencephalogr Clin Neurophysiol , 66 : 502 – 511 .
  • Tsuji , Y and Kobayashi , T . 1988 . Short and long ultradian EEG components in daytime arousal . EEG Clin. Neurophysiol , 70 : 110 – 117 .
  • Uchida , S , Maloney , T , March , JD , Azari , R and Feinberg , I. 1991 . Sigma (12–15 Hz) and delta (0.3–3 Hz) EEG oscillate reciprocally within NREM sleep . Brain Res Bull , 27 : 93 – 96 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.