124
Views
1
CrossRef citations to date
0
Altmetric
Article

Season-dependent differential effect of temperature on diurnal rhythm of expression of core clock genes in the pineal organ of an air-breathing catfish, Clarias gariepinus

, &
Pages 120-138 | Received 23 Aug 2018, Accepted 27 Aug 2018, Published online: 03 Oct 2018

References

  • Ackermann K, Stehle JH. 2006. Melatonin synthesis in the human pineal gland: advantages, implications, and difficulties. Chronobiol Int. 23:369–379.
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.
  • Amaral IPG, Johnston IA. 2012. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish. Am J Physiol Regul Integr Comp Physiol. 302:193–206.
  • Ben-Moshe Z, Alon S, Mracek P, Faigenbloom L, Tovin A, Vatine GD, Eisenberg E, Foulkes NS, Gothilf Y. 2014. The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light. Nucleic Acids Res. 42:3750–3767.
  • Cao J, Bian J, Wang Z, Dong Y, Chen Y. 2017. Effect of monochromatic light on circadian rhythmic expression of clock genes and arylalkylamine N-acetyltransferase in chick retina. Chronobiol Int. 34:1149–1157.
  • Cermakian N, Whitmore D, Foulkes NS, Sassone-Corsi P. 2000. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. P Natl Acad Sci USA. 97:4339–4344.
  • Costa LS, Serrano I, Sánchez-Vázquez FJ, López-Olmeda JF. 2016. Circadian rhythms of clock gene expression in Nile tilapia (Oreochromis niloticus) central and peripheral tissues: influence of different lighting and feeding conditions. J Comp Physiol B. 186:775–785.
  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, et al. 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36:W465–W469.
  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59:307–321.
  • Gupta BBP. 2016. Comparative endocrinology of the pineal organ: structural evolution, regulation and functions. In: Haldar C, Gupta S, Goswami S, editors. Updates on integrative physiology and comparative endocrinology. Varanasi: Publication Cell, Press and Publication Division, Banaras Hindu University; p. 297–328.
  • Gupta BBP, Premabati Y. 2002. Fish pineal: structure, function and regulation. In: Haldar C, Singaravel M, Maitra SK, editors. Treatise on pineal gland and melatonin. Enfield (USA): Science Publisher, Inc.; p. 77–102.
  • Gupta BBP, Spessert R, Vollrath L. 2005. Molecular components and mechanism of adrenergic signal transduction in mammalian pineal gland: regulation of melatonin synthesis. Indian J Exp Biol. 43:115–149.
  • Herrero MJ, Lepesant JMJ. 2014. Daily and seasonal expression of clock genes in the pituitary of the European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol. 208C:30–38.
  • Huang TS, Ruoff P, Fjelldal PG. 2010a. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts. Chronobiol Int. 27:1697–1714.
  • Huang TS, Ruoff P, Fjelldal PG. 2010b. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in Atlantic salmon postsmolts. Chronobiol Int. 27:1715–1734.
  • Hur SP, Takeuchi Y, Itoh H, Uchimura M, Takahashi K, Kang HC, Lee YD, Kim SJ, Takemura A. 2012. Fish sleeping under sandy bottom: interplay of melatonin and clock genes. Gen Comp Endocrinol. 177:37–45.
  • Ikegami T, Takeuchi Y, Hur S, Takemura A. 2014. Marine genomics impacts of moonlight on fish reproduction. Mar Genom. 14:59–66.
  • Jiang N, Wang Z, Cao J, Dong Y, Chen Y. 2017. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick. J Photoch Photobio B. 173:476–484.
  • Kaneko M, Cahill GM. 2005. Light-dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol. 3:0313–0323.
  • Ko CH, Takahashi JS. 2006. Molecular components of the mammalian circadian clock. Hum Mol Genet. 15:R271–R277.
  • Kwon I, Choe HK, Son GH, Kim K. 2011. Mammalian molecular clocks. Exp Neurobiol. 20:1828.
  • Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS. 2005. Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol. 3(11):e351.
  • Lazado CC, Kumaratunga HPS, Nagasawa K, Babiak I, Giannetto A, Fernandes JMO. 2014. Daily rhythmicity of clock gene transcripts in Atlantic cod fast skeletal muscle. PLoS One. 9:1–12.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408.
  • Martín-Robles ÁJ, Isorna E, Whitmore D, Muñoz-Cueto JA, Pendón C. 2011. The clock gene period3 in the nocturnal flatfish Solea senegalensis: molecular cloning, tissue expression and daily rhythms in central areas. Comp Biochem Phys A. 159:7–15.
  • Martín-Robles ÁJ, Whitmore D, Sánchez-Vázquez FJ, Pendón C, Muñoz-Cueto JA. 2012. Cloning, tissue expression pattern and daily rhythms of period1, period2, and clock transcripts in the flatfish Senegalese sole, Solea senegalensis. J Comp Physiol B. 182:673–685.
  • Mcstay E, Migaud H, Maria L, Sánchez-Vázquez FJ, Davie A. 2014. Comparative study of pineal clock gene and AANAT2 expression in relation to melatonin synthesis in Atlantic salmon (Salmo salar) and European seabass (Dicentrarchus labrax). Comp Biochem Phys A. 169:77–89.
  • Mogi M, Uji S, Yokoi H, Suzuki T. 2015. Early development of circadian rhythmicity in the suprachiasmatic nuclei and pineal gland of teleost, flounder (Paralichthys olivaeus), embryos. Dev Growth Differ. 57:444–452.
  • Mohawk JA, Green CB, Takahashi JS. 2012. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 35:445–462.
  • Moretti S, Armougom F, Wallace IM, Higgins DG, Jongeneel CV, Notredame C. 2007. The MCoffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res. 35:W645–W648.
  • Ono D, Honma S, Nakajima Y, Kuroda S, Enoki R, Honma KI. 2017. Dissociation of per1 and bmal1 circadian rhythms in the suprachiasmatic nucleus in parallel with behavioral outputs. P Natl Acad Sci USA. 114:E3699–E3708.
  • Park JG, Park YJ, Sugama N, Kim SJ, Takemura A. 2007. Molecular cloning and daily variations of the period gene in a reef fish Siganus guttatus. J Comp Physiol A. 193:403–411.
  • Patiño MAL, Rodríguez-Illamola A, Conde-Sieira M, Soengas JL, Míguez JM. 2011. Daily rhythmic expression patterns of clock1a, bmal1, and per1 genes in retina and hypothalamus of the Rainbow Trout, Oncorhynchus Mykiss. Chronobiol Int. 28:381–389.
  • Pierce LX, Noche RR, Ponomareva O, Chang C, Liang JO. 2008. Novel functions for period3 and Exo-rhodopsin in rhythmic transcription and melatonin biosynthesis within the zebrafish pineal organ. Brain Res. 1223:11–24.
  • Sanchez JA, Sanchez-Vazquez FJ. 2009. Feeding entrainment of daily rhythms of locomotor activity and clock gene expression in zebrafish brain. Chronobiol Int. 26:1120–1135.
  • Singh KM, Saha S, Gupta BBP. 2017. Season-dependent effects of photoperiod and temperature on circadian rhythm of arylalkylamine N-acetyltransferase2 gene expression in pineal organ of an air-breathing catfish, Clarias gariepinus. J Photoch Photobiol B. 173:140–149.
  • Strand JET, Aarseth JJ, Hanebrekke TL, Jorgensen EH. 2008. Keeping track of time under ice and snow in a sub-arctic lake: plasma melatonin rhythms in Arctic charr overwintering under natural conditions. J Pineal Res. 44:227–233.
  • Sugama N, Park JG, Park YJ, Takeuchi Y, Kim SJ, Takemura A. 2008. Moonlight affects nocturnal period2 transcript levels in the pineal gland of the reef fish Siganus guttatus. J Pineal Res. 45:133–141.
  • Takeuchi Y, Kabutomori R, Yamauchi C, Miyagi H, Takemura A, Okano K, Okano T. 2018. Moonlight controls lunar-phase-dependency and regular oscillation of clock gene expressions in a lunar-synchronized spawner fish, Goldlined spinefoot. Sci Rep-UK. 8:6208.
  • Velarde E, Haque R, Iuvone PM, Azpeleta C, Alonso-Gómez AL, Delgado MJ. 2009. Circadian clock genes of goldfish, Carassius auratus: cDNA cloning and rhythmic expression of period and cryptochrome transcripts in retina, liver, and gut. J Biol Rhythm. 24:104–113.
  • Wu P, Li YL, Cheng J, Chen L, Zhu X, Feng ZG, Zhang JS, Chu WY. 2016. Daily rhythmicity of clock gene transcript levels in fast and slow muscle fibers from Chinese perch (Siniperca chuatsi). BMC Genomics. 17:1008–1022.
  • Yin L, Wu N, Lazar MA. 2010. Nuclear receptor rev-erbalpha: a heme receptor that coor-dinates circadian rhythm and metabolism. Nucl Recept Signal. 8:e001.
  • Yufera M, Perera E, Mata-Sotres JA, Calduch-Giner J, Martinez-Rodriguez G, Perez-Sanchez J. 2017. The circadian transcriptome of marine fish (Sparus aurata) larvae reveals highly synchronized biological processes at the whole organism level. Sci Rep-UK. 7:12943–12957.
  • Ziv L, Gothilf Y. 2006. Period2 expression pattern and its role in the development of the pineal circadian clock in zebrafish. Chronobiol Int. 23:101–112.
  • Ziv L, Levkovitz S, Toyama R, Falcon J, Gothilf Y. 2005. Functional development of the zebrafish pineal gland: light-induced expression of period2 is required for onset of the circadian clock. J Neuroendocrinol. 17:314–320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.