138
Views
1
CrossRef citations to date
0
Altmetric
Article

Responses of forage watermelon genotypes submitted to different water supply

, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 293-306 | Received 08 Mar 2016, Accepted 13 Mar 2018, Published online: 21 Mar 2019

References

  • Acar B, Acar R, Uzan B, Direk M. 2014. Effect of different irrigation levels on forage watermelon yield in middle anatolian region of turkey. Int J Agricult Econ Develop. 2:10–15. http://www.academicjournals.org/AJB.
  • Akashi K, Yoshida K, Kuwano M, Kajikawa M, Yoshimura K, Hoshiyasu S, Inagaki N, Yokota A. 2011. Dynamic changes inthe leaf proteome of a C3 xerophyte, Citrullus lanatus (wild waatermelon), in reponse to water déficit. Planta. 233:947–960. doi:10.1007/s00425-010-1341-4
  • Aoac - Association of Official Analytical Chemists. 2016. Official methods of analysis of AOAC International. Ed., Latimer Jr., G.W. 20th ed. Washington (D.C.). p. 3100.
  • Carmo RILGS, Silva ES, Monteiro Neto JLL, Trassato LB, Medeiros RD, Porto DS. 2015. Agronomic performance of watermelon cultivars in the Cerrado region of Boa Vista. Rev Agro@mbiente. 9:268–274. doi:10.18227/1982-8470ragro.v9i3.2531
  • Chitarra MI, Chitarra AB. 2005. Pós - colheita de frutos e hortaliças: fisiologia e manuseio. 2nd ed. Lavras: UFLA; p. 85.
  • Doorenbos J, Pruitt WO. 1984. Las necessidades de agua de los cultivos. Roma: FAO, (FAO. Riego y Drenaje, 24); p. 194.
  • Embrapa – Empresa brasileira de pesquisa agropecuária. 2013. Sistema brasileiro de classificação de solos. 3th. Rio de Janeiro: Centro Nacional de Pesquisa de Solos; p. 353.
  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sehrish Sadia S, Nasim W, Adkins S, Saud S, et al. 2017. Crop production under drought and heat stress: plant responses and management options shah. Front Plant Sci. 8:1–16. doi:10.3389/fpls.2017.01147
  • Ferreira VM. 2012. Coeficiente de cultura e lâmina ótima de irrigação para a melancia, na microrregião de Teresina, PI. 99 f [Tese (Doutorado em Agronomia) – UNESP]. Botucatu.
  • Fischer G, Ramírez F, Casierra-Posada F. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A Review Agron Colomb. 34:190–199. doi:10.15446/agron.colomb.v34n2.56799
  • Gama RNCS, Dias RCS, Alves JCSF, Damaceno LS, Teixeira FA, Barbosa GS. 2013. Taxa de sobrevivência e desempenho agronômico de melancia sob enxertia. Horticult Bras. 31:128–132. doi:10.1590/S0102-05362013000100020
  • Hsiao TC. 1973. Plant responses to water stress. Ann Review Plant Physiol. 24:519–570. doi:10.1146/annurev.pp.24.060173.002511
  • Ipa – Empresa Pernambucana de Pesquisa Agropecuária. 2008. Cavalcanti, F.J.A. Recomendações de Adubação para o Estado de Pernambuco. 2th ed. Recife. p. 198.
  • Kawasaki S, Miyake C, Kohoci T, Fujii S, Uchida M, Yokota A. 2000. Responses to wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during ware deficit. Plant Cell Physiol. 41:864–873. https://www.ncbi.nlm.nih.gov/pubmed/10965943.
  • Lopez-Alonso M. 2012. Trace Minerals and Livestock: Not Too Much Not Too Littlet. ISRN Vet. Sci. 2012: 1–18. http://dx.doi.org/10.5402/2012/704825.
  • Melo AS, Suassuna JF, Fernandes PD, Brito MEB, Suassuna AF, Aguiar Netto AO. 2010. Crescimento vegetativo, resistência estomática, eficiência fotossintética e rendimento do fruto da melancieira em diferentes níveis de água. Acta Scient Agro. 32:73–79. doi:10.4025/actasciagron.v32i1.2136
  • Nogueira ARA, Souza GB. 2005. Tecido vegetal. Manual de laboratórios: solo, água, nutrição vegetal, nutrição animal e alimentos. São Carlos: Embrapa Pecuária Sudeste; p. 334.
  • Pereira JMG .2012. Produção, trocas gasosas e estado nutricional da melancia, submetida a diferentes lâminas de irrigação e doses de boro [64 f. Dissertação (Mestrado em Agronomia) - Centro de Ciências Agrárias]. Fortaleza: Universidade Federal do Ceará.
  • Rodrigues AM, Vaz ESR. 2013. Utilização da melancia na alimentação de novilhos. Agroforum. 30:33–38. http://www.ipcb.pt/images/ESA/Agroforum/pdfs/30.pdf.
  • Santos RM. 2016. Análise dialélica e inter-relação entre caracteres em cultivares de melancia forrageira. 84 f [Tese (Doutorado em Recursos Genéticos Vegetais) - Universidade Estadual de Feira de Santana]. Feira de Santana.
  • Santos RM, Melo NF, Fonseca MAJ, Queiroz MAA. 2017. Combining ability of forage watermelon (Citrullus lanatus var. Citroides Germplasm Rev Caat. 30:768–775. doi:10.1590/1983-21252017v30n325rc
  • Sas, Statistical analysis system institute. 2011. SAS/STAT User’s guide version 9,2. Cary: SAS Institute; p. 8621.
  • Silva CL, Bassi NSS, Rocha Junior WF. 2016. Technologies for rational water use in Brazilian agriculture. Rev Amb Água. 11:1–11. doi:10.4136/ambi-agua.1808
  • Silva RLV, Araújo GGL, Socorro EP, Oliveira RL, Garcez Neto AF, Bagaldo AR. 2009. Levels of forage watermelon meal in diets for sheep. Rev Bras Zootec. 38:1142–1148. doi:10.1590/S1516-35982009000600023
  • Singh A, Aggarwal N, Aulakh GS, Hundal RK. 2012. Ways to maximize the water use efficiency in field crops – a review. Greener J Agricult Sci. 2:108–129. doi:10.15580/GJAS.2012.4.JPAS11-018
  • Sniffen CJ, O’Connor JD, Van Soest PJ, Fox DG, Russell JB. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci. 70:3562–3577. https://www.ncbi.nlm.nih.gov/pubmed/1459919.
  • Tabiri B, Agbenorhevi JK, Wireko-Manu FD, Ompouma EI. 2016. Watermelon seeds as food: nutrient composition, phytochemicals and antioxidant activity. Int J Nutr Food Sci. 5:139–144. doi:10.11648/j.ijnfs.20160502.18
  • Taiz L, Zeiger E. 2013. Fisiologia vegetal. 5th ed. Porto Alegre: Artmed; p. 820.
  • Tardieu F. 2013. Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Front Physiol. 4:1–11. doi:10.3389/fphys.2013.00017
  • Thornton PK. 2010. Livestock production: recent trends, future prospects. Phil Trans Royal Soc B. 365:2853–2867. doi:10.1098/rstb.2010.0134
  • Urban J, Ingwers MW, McGuire MA, Teskey RO. 2017. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x Nigra. J Exp Bot. 68:1757–1767. doi:10.1093/jxb/erx052
  • Van Soest PJ. 1994. Nutritional ecology of the ruminant. Ithaca: Cornell University Press; p. 476.
  • Yu M, Ding G, Gao G, Zhao Y, Sai K. 2018. Leaf temperature fluctuations of typical psammophytic plants and their application to stomatal conductance estimation. Forests. 9:1–13. doi:10.3390/f9060313
  • Zhang SB, Mei Sun M, Cao KF, Hu H, Zhang JL. 2014. Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity. PLoS One. 9:1–10. doi:10.1371/journal.pone.0084682
  • Zhengbin Z, Ping X, Hongbo S, Mengjun L, Zhenyanf LC. 2011. Advances a water use efficiency. Crit Reviews Biotech. 31:1–13. doi:10.3109/07388551.2010.531004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.