136
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Potential linkages between circadian rhythm and membrane lipids: timekeeper and bilayer

ORCID Icon
Pages 117-130 | Received 09 Feb 2022, Accepted 23 Jun 2022, Published online: 05 Jul 2022

References

  • Aloulou A, Ali YB, Sa B, Gargouri Y, Gelb MH. 2012. Phospholipases: an overview. In: Sandoval G, editor. Lipases and phospholipases: methods and protocols. New York: Springer Science and Business Media; p. 63–85.
  • Ang JE, Revell V, Mann A, Mantele S, Otway DT, Johnston JD, Thumser AE, Skene DJ, Raynaud F. 2012. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mas spectrometry metabolomic approach. Chronobiol Int. 29(7):868–881. doi:10.3109/07420528.2012.699122.
  • Aviram R, Manella G, Kopelman N, Neufeld-Cohen A, Zwighaft Z, Elimelech M, Adamovich Y, Golik M, Wang C, Han X, et al. 2016. Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Mol Cell. 62(4):636–648. doi:10.1016/j.molcel.2016.04.002.
  • C-P CE, Shui G, Cazenave-Gassiot A, Wenk MR, Gooley JJ. 2015. Changes in plasma lipids during exposure to total sleep deprivation. Sleep. 38(11):1683–1691. doi:10.5665/sleep.5142.
  • Cao R. 2018. mTOR signaling, translational control and the circadian clock. Front Genet. 9:367. doi:10.3389/fgene.2018.00367.
  • Chua EC-P, Shui G, Lee IT-G, Lau P, Tan L-C, Yeo S-C, Lam BD, Bulchand S, Summers SA, Pruvanendran K, et al. 2013. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. PNAS. 110(35):14468–14473. doi:10.1073/pnas.1222647110.
  • Chwastek G, Surman MA, Rizk S, Grosser D, Lavrynenko O, Rucinska M, Jambor H, Saenz J. 2020. Principles of membrane adaptation revealed through environmentally induced bacterial lipidome remodeling. Cell Rep. 32(12):108165. doi:10.1016/j.celrep.2020.108165.
  • Cote GG, Brody S. 1987. Circadian rhythms in neurospora crassa: membrane composition of a mutant defective in temperature compensation. Biochim Biophys Acta. 898(1):23–36. 26. doi:10.1016/0005-2736(87)90106-4.
  • Cote GG, Lakin-Thomas PL, Brody S. 1996. Membrane lipids and circadian rhythms in Neurospora crassa. vanden driessche th. In: Guisset J-L, Petiau-deVries GM, editors. Membrane and Circadian Rhythms. Berlin Heidelberg: Springer-Verlag; p. 13–39.
  • de Assis Lm M, Oster H. 2021. The circadian clock and metabolic homeostasis: entangled networks. Cell Mol Life Sci. 78(10):4563–4587. doi:10.1007/s00018-021-03800-2.
  • Driessche TV, Guisset J-L, Vries GM P-D, Gaspar T. 1996. The plasma membrane of Acetabularia: an integratingfunction regulated by circadian rhythmicity. In: ThV D, J-L G, GM P-D, editors. Membranes and circadian rhythms. Berlin Heidelberg: Springer-Verlag; p. 201–219.
  • EngelmannW SM. 1979. Membrane models for circadian rhythms.In: smith KC, editor.Photochemical and pathobiological reviews. New York:Plenum Press. Vol. 5 p.49–86.
  • Foster DA, Salloum D, Menon D, Frias MA. 2014. Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J Biol Chem. 289(33):22583–22588. doi:10.1074/jbc.R114.566091.
  • Graham TR. 2021. Tour de flippase ASBMB TODAY. August, p.17.
  • Gurtovenko AA, Anwar J. 2009. Interaction of ethanol with biological membranes: the formation of non-bilayer structures within the membrane interior and their significance. J Phys Chem B. 113(7):1983–1992. doi:10.1021/jp808041z.
  • Güldür T, Otlu HG. 2017. Circadian rhythm in mammals: time to eat & time to sleep. Biol Rhythm Res. 48(2):243–261. doi:10.1080/09291016.2016.1251968.
  • Hatakeyama R, Kono K, Yoshida S. 2017. Ypk1/Ypk2 kinases maintain Rho1 at the plasma membrane by flippase-dependent lipid remodelling after membrane stress. J Cell Sci. 130(6):1169–1178. doi:10.1242/jcs.198382.
  • Henslee EA, Crosby P, Kitcatt SJ, Parry JSW, Bernardini A, Abdallat RG, Brawn G, Fatoyinbo HO, Harrison EJ, Edgar RS, et al. 2017. Rhythmic potassium transport regulates the circadian clock in human red blood cells. Nat Commun. 8(1):1978. doi:10.1038/s41467-017-02161-4.
  • Hishikawa D, Hashidate T, Shimizu T, Shindou H. 2014. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res. 55(5):799–807. doi:10.1194/jlr.R046094.
  • Homble F. 1996. Membrane transport and oscillations in plants. In: ThV D, J-L G, GM P-D, editors. Membranes and circadian rhythms. Berlin Heidelberg: Springer-Verlag; p. 125–138.
  • Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB. 2009. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5(4):e1000442. doi:10.1371/journal.pgen.1000442.
  • Israelachvili J. 2007. Aggregation of amphiphilic molecules into micelles, bilayers, vesicles and biological membranes. In: Israelachvili J, editor. Intermolecular & surface forces. 2nd ed. PRC: Academic Press; p. 366–394.
  • Kasukawa T, Sugimoto M, Hida A, Minami Y, Mori M, Honma S, Honma K-I, Mishima K, Soga T, Ueda HR. 2012. Human blood metabolite timetable indicates internal body time. PNAS. 19(37):15036–15041. doi:10.1073/pnas.1207768109.
  • Klose C, Surma MA, Simons K. 2013. Organellar lipidomics- background and perspectives. Curr Opin Cell Biol. 25(4):406–413. doi:10.1016/j.ceb.2013.03.005.
  • Kobayashi K, Endo K, Wada H. 2016. Roles of lipids in photosynthesis. In: Nakamura Y, Li-Beisson Y, editors. Lipids in plant and algae development. Switzerland: Springer International Publishing; p. 21–49.
  • Koynova R, Tenchov B. 2013. Transition between lamellar and non-lamellar phases in membrane lipids and their physiological roles. OA Biochem. 1(1):9. doi:10.13172/2052-9651-1-1-602.
  • Lakin-Thomas P. 2019. Circadian rhythms, metabolic oscillators, and the target of rapamycin (TOR) pathway: neurospora connection. Curr Genet. 65(2):339–349. doi:10.1007/s00294-018-0897-6.
  • Lands WE. 1958. Metabolism of glycerolipids: a comparison of lecithin and triglyceride synthesis. J Biol Chem. 231(2):883–888. doi:10.1016/S0021-9258(18)70453-5.
  • Langmesser S, Albrecht U. 2006. Life time-circadian clocks, mitochondria and metabolism. Chronobiol Int. 23(1–2):151–157. doi:10.1080/07420520500464437.
  • Larsson K. 1988. Anesthetic effect and a lipid bilayer transition involving periodic curvature. Langmuir. 4(1):215–217. doi:10.1021/la00079a039.
  • Lewis RNAH, Mannock DA, McElhaney RN. 1997. Membrane lipid molecular structure and polymorphism. In: Fambrough DM, editor. Lipid polymorphism and membrane properties. USA: Academic Press; p. 25–103.
  • Loizides-Mangold U, Perrin L, Vandereycken B, Betts JA, Walhin J-P, Templeman I, Chanon S, Weger BD, Durand C, Robert M, et al. 2017. Lipidomics reveals diurnal lipid oscillation in human skeletal muscle persisting in cellular myotubes cultured in vitro. PNAS. 114(41):E865–E8574. doi:10.1073/pnas.1705821114.
  • Lundvıskt GB, Block GD. 2005. Role of neuronal membrane events in circadian rhythm generations. Methods Enzymol. 393:623–642.
  • Maata S, Scheu B, Roth MR, Tamura P, Li M, Williams TD, Wang X, Welti R. 2012. Levels of Arabidopsis thaliana leaf phosphatidic acids, phosphatidylserines and most trienoate-containing polar lipid molecular species increase during the dark period of the diurnal cycle. Front Plant Sci. 3:49. doi:10.3389/fpls.2012.00049.
  • Meguro M, Kashiwagi A, Mitsuya K, Nakao M, Kondo I, Saitoh S, Oshimura M. 2001. A novel maternally expressed gene, ATP10C, encodes a putative aminophospholipid translocase associated with Angelman syndrome. Nat Genet. 28(1):19–20. doi:10.1038/ng0501-19.
  • Minami Y, Kasukawa T, Kakazu Y, Iigo M, Sugimoto M, Ikeda S, Yasui A, van der Horst Gtj, Soga T, and Ueda HR, et al. 2009. Measurement of internal body time by blood metabolomics. PNAS. 106(24):9890–9895. doi:10.1073/pnas.0900617106.
  • Mistlberger RE. 2011. Neurobiology of food anticipatory circadian rhythms. Physiol Behav. 104(4):535–545. doi:10.1016/j.physbeh.2011.04.015.
  • Möller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, Jcy L, Santhi N, von Schantz M, Smith CP, et al. 2013. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. PNAS. 110(12):E1132–E1141. doi:10.1073/pnas.1217154110.
  • Muir A, Ramachandran S, Roelants FM, Timmons G, Thorner J. 2014. TORC2-dependent protein kinase Ypk 1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. Elife. 3:e03779. doi:10.7554/eLife.03779.
  • Nakamura Y. 2018. Membrane lipid oscillation: an emerging system of molecular dynamics in the plant membrane. Plant Cell Physiol. 59(3):441–447. doi:10.1093/pcp/pcy023.
  • Njus D, Sulzman FM, Hastings JW. 1974. Membrane model for the circadian clock. Nature. 248(5444):116–120. doi:10.1038/248116a0.
  • O’Neil JS, Reddy AB. 2011. Circadian clocks in human red blood cells. Nature. 469(7331):498–503. doi:10.1038/nature09702.
  • Orozco-Solis R, Sassone-Corsi P. 2014. Epigenetic control and the circadian clock: linking metabolism to neuronal responses. Neuroscience 264:76–87. doi:10.1016/j.neuroscience.2014.01.043.
  • Orts-Sebastian A, Ludin NM, Pawley MDM, Cheeseman JF, Warman GR. 2019. Impact of anaesthesia on circadian rhythms and implications for laboratory experiments. Exp Neurol. 311:318–322. doi:10.1016/j.expneurol.2018.09.017.
  • Otlu HG 2019. Effect of circadian rhythm disturbances on peroxisomal lipid metabolism. PhD Thesis, İnönü University, Graduate Institute of Health Sciences, Malatya/Turkey.
  • Patke A, Young MW, Axelrod S. 2020. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 21(2):67–84. doi:10.1038/s41580-019-0179-2.
  • Ruf T, Arnold W. 2015. Daily and seasonal rhythms in human mucosa phospholipid fatty acid composition. J Biol Rhythms. 30(4):331–341. doi:10.1177/0748730415588190.
  • S-q S, Bichell TJ, Ihrie RA, Johnson CH. 2015. Ube3a imprinting impairs circadian robustness in Angelman syndrome models. Curr Biol. 25(5):537–545. doi:10.1016/j.cub.2014.12.047.
  • Scholübbers HG, Taylor W, Rensing L. 1984. Are membrane properties essential for the circadian rhythm of Gonyaulax. Am J Physiol. 16:R250–R256.
  • Scott BIH, Gulline HF. 1975. Membrane changes in a circadian system. Nature. 254(5495):69–70. doi:10.1038/254069a0.
  • Sinturel F, Spaleniak W, Dibner C Circadian rhythm of lipid metabolism. 2022. Biochem Soc Trans. May 23: BST20210508
  • Tabuchi M, Coates KE, Bautista OB, Zukowski LH. 2021. Light/clock influences membrane potential dynamics to regulate sleep states. Front Neurol. 12:625369. doi:10.3389/fneur.2021.625369.
  • Takada N, Naito T, Inoue T, Nakayama K, Takatsu H, Shin HW. 2018. Phospholipid-flipping activity of P4- ATP ase drives membrane curvature. EMBO J. 37(9):e97705. doi:10.15252/embj.201797705.
  • Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 18(3):164–179. doi:10.1038/nrg.2016.150.
  • Tang J, Yan Y, Zheng J-S, Mi J, Li D. 2018. Association between erythrocyte membrane phospholipid fatty acids and sleep disturbance in Chinese children and adolescents. Nutrients. 10(3):344. doi:10.3390/nu10030344.
  • Teixeira KRC, Alves de Medeiros L, Mendes JA, Vaz ER, Cunha TM, Oliveira EP, Penha-Silva N, Crispim CA. 2019. The erythrocyte membrane stability is associated with sleep time and social jetlag in shift workers. PLoS One. 14(9):e0222698. doi:10.1371/journal.pone.0222698.
  • Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. 2022. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem. 298(1):101470. doi:10.1016/j.jbc.2021.101470.
  • Wanderlingh V, Angelo GD, Nibali VC, Crupi C, Rifici S, Corsaro C, Sabatino G. 2010. Interaction of alcohol with phospholipid membrane: NMR and XRD investigations on DPPC-hexagonal system. Spectroscopy. 24(3–4):375–380. doi:10.1155/2010/730327.
  • Wang Y, Qin Y, Li B, Zhang Y, Wang L. 2020. Attenuated TOR signaling lengthens circadian period in Arabidopsis. Plant Signal Behav. 15(2):e1710935. doi:10.1080/15592324.2019.1710935.
  • Weljie AM, Meerlo P, Goel N, Sengupta A, Kayser MS, Abel T, Birnbaum MJ, Dinges DF, A A. 2015. Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt. Proc Natl Acad Sci. 112(8):2569–2574. doi:10.1073/pnas.1417432112.
  • Xie Y, Tang Q, Chen G, Xie M, Yu S, Zhao J, Chen L. 2019. New insights into the circadian rhythm and its related diseases. Front Physiol. 10:682. doi:10.3389/fphys.2019.00682.
  • Yamashita A, Suguiura T, Waku K. 1997. Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem. 122(1):1–16. doi:10.1093/oxfordjournals.jbchem.a021715.
  • Yu L, Zhou C, Fan J, Shanklin J, Xu C. 2021. Mechanisms and functions of membrane lipid remodeling in plants. Plant J. 107(1):37–53. doi:10.1111/tpj.15273.
  • Zhang P, Csaki LS, Ronquillo E, Baufeld LJ, Lin JY, Gutierrez A, Dwyer JR, Brindley DN, Fong LG, Tontonoz P, et al. 2019. Lipin 2/3 phosphatidic acid phosphatases maintain phospholipid homeostasis to regulate chylomicron synthesis. J Clin Invest. 129(1):281–295. doi:10.1172/JCI122595.
  • Zhang Z, Xin H, Li M-D. 2020. Circadian rhythm of lipid metabolism in health and disease. Small Methods. 4(7):1900601. doi:10.1002/smtd.201900601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.