101
Views
0
CrossRef citations to date
0
Altmetric
Articles

The daily locomotor activity profile of Zebrafish Danio rerio is affected when exposed to polluted water from Lerma River (Guanajuato, Mexico)

, &
Pages 385-398 | Received 24 Nov 2022, Accepted 21 Mar 2023, Published online: 04 Apr 2023

References

  • Arredondo FJL, Ponce PJT. 1998. Calidad del agua en acuicultura: conceptos y aplicaciones [Water quality in aquaculture: concepts and applications] AGT Eds, México, 222 p.
  • Arteaga CV. 2010. Calidad de Aguas Residuales de la cuenca Lerma- Chapala [Wastewater quality of the Lerma-Chapala Basin] [ Master Thesis (Sciences). Colegio de Postgraduados (COLPOS)]. México: Consejo Nacional del Ciencia y Tecnología (CONACYT). 87 p. http://hdl.handle.net/10521/161
  • Audira G, Sampurna BP, Juniardi S, Liang ST, Lai YH, Han L, Hsiao CD. 2019. Establishing simple image-based methods and a cost-effective instrument for toxicity assessment on circadian rhythm dysregulation in fish. Biol Open. Jun 26. 8(6):bio041871. PMID: 31182629. doi:10.1242/bio.041871
  • Austin B. 1998. The effects of pollution on fish health. J Appl Microbiol. 85(S1):234S–242S. doi:10.1111/j.1365-2672.1998.tb05303.x.
  • Aydin I, Aydin F, Hamamci C. 2010. Phosphorus speciation in the surface sediment and river water from the Orontes (Asi) River, Turkey. Water Environ Res. 82(11):2265–2271. doi:10.2175/106143010x12609736967206.
  • Baganz D, Siegmund R, Staaks G, Pflugmacher S, Steinberg CEW. 2005. Temporal pattern in swimming activity of two fish species (Danio rerio and Leucaspius delineatus) under chemical stress conditions. Biol Rhythm Res. 36(3):263–276. doi:10.1080/09291010500103112.
  • Blancas AGA, Constanzo-Casillas E, Cervantes-Sandoval A, Gómez-Márquez JL. 2011. Manual de análisis de aguas naturales y su aplicación a la microescala [Manual of natural water analysis and its application to the microscale]. Vol. 76. México: Facultad de Estudios Superiores Zaragoza, Ed. Universidad Nacional Autónoma de México.
  • Bradford M. 1976. A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteín-dye binding. Anal Biochem. 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3.
  • Brito EM, De la Cruz-Barrón M, Caretta CA, Goñi-Urriza M, Andrade L, Cuevas-Rodríguez G, Guyoneaud R. 2015. Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: investigation of hydrocarbon degradation potential. Sci Total Environ. 521:1–10. doi:10.1016/j.scitotenv.2015.02.098.
  • Caballero-Hernández O, Hernández-Patricio M, Sigala-Regalado I, Morales-Malacara JB, Miranda-Anaya M. 2015. Circadian rhythms and photic entrainment of swimming activity in cave dwelling fish Astyanax mexicanus (Actinopterygii: Characidae) from El Sótano La Tinaja, San Luis Potosi, Mexico. Biol Rhythm Res. 46(4):579–586. doi:10.1080/09291016.2015.1034972.
  • Camargo JA. 2003. Fluoride toxicity to aquatic organisms: a review. Chemosphere. 50(3):251–264. doi:10.1016/S0045-6535(02)00498-8.
  • Camargo JA, Alonso A. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int. 32(6):831849. doi:10.1016/j.envint.2006.05.002.
  • Camargo JA, Alonso A, Salamanca A. 2005. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere. 58(9):1255–1267. doi:10.1016/j.chemosphere.2004.10.044.
  • Carreño C, Zarzúa G, Fall C, Ávila- Pérez P, Tejeda S. 2018. Evaluación de la toxicidad de los sedimentos del curso alto del río Lerma (Evaluation of the toxicity of the sediments of the upper course of the Lerma river) México. Rev Int Contam Amb. 34(1):117–126. doi:10.20937/RICA.2018.34.01.10.
  • Catala A. 2012. Lipid peroxidation: chemical mechanism, biological implications and analytical determination. In: Repetto M, Semprime J Boveris A, editors. Lipid Peroxidation. Coacia. Intech. pp. 3–11. doi:10.5772/45943.
  • CE-CCA 001/89, Centro de Calidad Ambiental [Environmental Quality Center]. 1989. Acuerdo por el que se establecen los criterios ecologicos de calidad del agua. [Agreement establishing the ecological criteria for water quality]. Ley General del Equilibrio Ecológico y la Protección al Ambiente. ce-cca-001/89,14 dic 1989 Mexico.
  • Colina M, Gardiner PHE, Rivas Z, Troncone F. 2005. Determination of vanadium species in sediment, mussel and fish muscle tissue samples by liquid chromatography–inductively coupled plasma-mass spectrometry. Anal Chim Acta. 538(1):107–115. doi:10.1016/j.aca.2005.02.044.
  • CONAGUA. Comisión Nacional del Agua CONAGUA [National Water Commission]. Estadísticas del agua en México [Water statistics in Mexico]. México, DF. Diciembre 2014. pp. 49–54.
  • Cuevas ML, Garrido A, Sotelo EI. 2010. Regionalización de las cuencas hidrográficas de méxico. Las cuencas hidrográficas de México: Diagnóstico y priorización [Regionalization of the hydrographic basins of Mexico. The hydrographic basins of Mexico: Diagnosis and prioritization]. Ciudad de México, México: Instituto Nacional de Ecología, SEMARNAT, Fundación Gonzalo Río Arronte IAP. 10–13 p.
  • Dai YJ, Jia YF, Chen N, Bian WP, Li QK, Ma YB, Pei DS. 2014. Zebrafish as a model system to study toxicology. Environ Toxicol Chem. 33(1):11–17. doi:10.1002/etc.2406.
  • Dembélé K, Haubruge E, Gaspar C. 1999. Recovery of acetylcholinesterase activity in the common carp (Cyprinus carpio L.) after inhibition by organophosphate and carbamate compounds. Bull Environ Contam Toxicol. 62(6):731–742. doi:10.1007/s001289900934.
  • Ding Y, Dong X, Feng W, Mao G, Chen Y, Qiu X, Chen K, Xu H. 2021. Tetrabromobisphenol S alters the circadian rhythm network in the early life stages of zebrafish. Sci Total Environ. 806(Pt 1):150543. doi:10.1016/j.scitotenv.2021.150543.
  • EPA. 1997. Determination of inorganic anions in drinking water by ion chromatography. John d. pfaff (USEPA, ord, nerl) - method 300.0, (1993) Daniel P. Hautman (USEPA, office of water) and David J. Munch (USEPA, office of water) method 300.1, (1997). National exposure research laboratory office of research and development U.S. Environmental Protection Agency. Cincinnati, Ohio. 45268
  • EPA. 2001. Method 200.7 Trace Elements in Water, Solids, and Biosolids by Inductively Coupled Plasma-Atomic Emission Spectrometry.
  • EPA 440/5–86–001. 1986. Quality Criteria for water. United States of Environmental Protection Agency.
  • Ercal N, Gurer-Orhan H, Aykin-Burns N. 2001. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 1(6):529–539. doi:10.2174/1568026013394831.
  • Fritz H, Trautschold I, Werle E. 1974. Protease inhibitors. In: Methods of enzymatic analysis. Acad. Press. pp. 1064–1080. doi:10.1016/B978-0-12-091302-2.X5001-4
  • Gensemer RW, Playle RC. 1999. The bioavailability and toxicity of aluminum in aquatic environments. Crit Rev Environ Sci Technol. 29(4):315–450. doi:10.1080/10643389991259245.
  • Government of the State of Mexico. 2002. Atlas ecológico de la cuenca hidrográfica del río Lerma [Ecological Atlas of the Lerma River Basin]. Tomo VII. Urbano. Comisión Coordinadora para la recuperación Ecológica de la Cuenca del río Lerma. México. p. 22–90, , .
  • Guidi C, Martínez-López E, Oliver JA, Sánchez-Vázquez FJ, Vera LM. 2023. Behavioural response to toxic elements, detoxification and organ accumulation are time-of-day-dependent in zebrafish. Chemosphere. 316:137862. Epub 2023 Jan 12. doi:10.1016/j.chemosphere.2023.137862
  • Guo RY, Xiang J, Wang LJ, Li EC, Zhang JL. 2022. Tributyltin exposure disrupted the locomotor activity rhythms in adult zebrafish (Danio rerio) and the mechanism involved. Aquat Toxicol. 251:106287. Epub 2022 Sep 1. doi:10.1016/j.aquatox.2022.106287.
  • Hurd MW, Debruyne J, Straume M, Cahill GM. Circadian rhythms of locomotor activity in zebrafish. Physiol Behav. 1998 Dec 1. 65(3):465–472. doi:10.1016/s0031-9384(98)00183-8
  • Hussain A, Audira G, Malhotra N, Uapipatanakul B, Chen JR, Lai YH, Huang JC, Chen KH, Lai HT, Hsiao CD. Multiple screening of pesticides toxicity in Zebrafish and Daphnia based on locomotor activity alterations. Biomolecules. 2020 Aug 23. 10(9):1224. doi:10.3390/biom10091224
  • Instituto Nacional de Ecología, México (INECC). 2008. Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo, la experiencia de México [Toxicological tests for the evaluation of chemical substances in water and soil, the experience of Mexico]. In: Martínez GFF, Espinosa CF, editors. Ensayo de toxicidad aguda con larvas y juveniles de los peces Brachydanio rerio y Poecilia reticulata [Acute toxicity test with larvae and juveniles of Brachydanio rerio and Poecilia reticulata fish]. Mexico:Secretaria del Medio Ambiente y Recursos Naturales (SEMARNAT). pp. 115–122
  • Instituto Nacional de Ecología, México (INECC). 2010. Manual de métodos de muestreo y preservación de muestras de las sustancias prioritarias para las matrices prioritarias del PRONAME [Manual of sampling methods and preservation of samples of priority substances for the priority matrices of PRONAME], Mexico. 55 p.
  • Jezierska B, Witeska M. 2006. The metal uptake and accumulation in fish living in polluted waters. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S, editors. Soil and water pollution monitoring, protection and remediation. NATO Science Series, Vol 69. Dordrecht: Springer. p. 107–114.
  • Junqueira VB, Barros SB, Chan SS, Rodrigues L, Giavarotti L, Abud RL, Deucher GP. 2004. Aging and oxidative stress. Mol Aspects Med. 25(1–2):5–16. doi:10.1016/j.mam.2004.02.003.
  • Karaman M, Toraman E, Sulukan E, Baran A, Bolat İ, Yıldırım S, Kankaynar M, Ghosigharehagaji A, Budak H, Ceyhun SB 2023 . Fluoride exposure causes behavioral, molecular and physiological changes in adult zebrafish (Danio rerio) and their offspring. Environ Toxicol Pharmacol. 97:104044. doi:10.1016/j.etap.2022.104044.
  • Kessabi M. 1984. Metabolisme et biochimie toxicologique du fluor: Une revue. Revue de Med Vet. 135:497–510.
  • Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. 2021. Circadian rhythms in zebrafish (Danio rerio) behaviour and the sources of their variability. Biol Rev Camb Philos Soc. 96(3):785–797. Epub 2020 Dec 17. doi:10.1111/brv.12678
  • Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. 2022 Apr 13. Magnetic fluctuations entrain the circadian rhythm of locomotor activity in Zebrafish: can cryptochrome be involved? Biology (Basel). 11(4):591. doi10.3390/biology11040591.
  • Kwong TC. 2002. Organophosphate pesticides: biochemistry and clinical toxicology. Ther Drug Monit. 24(1):144–149. doi:10.1097/00007691-200202000-00022.
  • Lele Z, Krone PH. 1996. The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnol Adv. 14(1):57–72. doi:10.1016/0734-9750(96)00004-3.
  • Lionetto MG, Caricato R, Giordano ME, Pascariello MF, Marinosci L, Schettino T. 2003. Integrated use of biomarkers (acetylcholinesterase and antioxidant enzymes activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Mar Pollut Bull. 46(3):324–330. doi:10.1016/S0025-326X(02)00403-4.
  • López-Hernández M, Ramos-Espinosa MG, Carranza-Fraser J. 2007. Análisis multimétrico para evaluar contaminación en el río Lerma y lago de Chapala, México [Multimetric analysis to evaluate contamination in the Lerma river and Lake Chapala, Mexico]. Hidrobiológica. 17(1):17–30.
  • Mejía JA, Rodriguez R, Armienta A, Mata E, Fiorucci A. 2007. Aquifer vulnerability zoning, an indicator of atmospheric pollutants input? Vanadium in the Salamanca aquifer, Mexico. Water Air Soil Poll. 185(1–4):95–100. doi:10.1007/s11270-007-9433-x.
  • Peña CE, Dean EC, Ayala-Fierro F. 2001. Toxicología Ambiental: Evaluación de Riesgos y Restauración Ambiental [Environmental Toxicology: Risk Assessment and Environmental Restoration]. Southwest Hazardous Waste Program. University of Arizona. 204 p.
  • Ren Q, Zhang T, Li S, Ren Z, Yang M, Pan H, Xu S, Qi L, Chon TS. 2016. Integrative characterization of toxic response of Zebra Fish (Danio rerio) to Deltamethrin based on AChE activity and behavior strength. Biomed Res Int. 2016:7309184. doi:10.1155/2016/7309184.
  • Rudneva II, Skuratovskaya EN, Kuzminova NS, Kovyrshina TB. 2010. Age composition and antioxidant enzyme activities in blood of Black Sea teleosts. Comp Biochem Physiol Part C Toxicol Pharmacol. 151(2):229–239. doi:10.1016/j.cbpc.2009.11.001.
  • Sarasamma S, Audira G, Siregar P, Malhotra N, Lai YH, Liang ST, Chen JR, Chen KH, Hsiao CD. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in Zebrafish: throwing up alarms of wide spread health risk of exposure. Int J Mol Sci. 2020 Feb 19. 21(4):1410. doi:10.3390/ijms21041410
  • Shiller AM, Mao L. 2000. Dissolved vanadium in rivers: effects of silicate weathering. Chem Geol. 165(1):13–22. doi:10.1016/S0009-2541(99)00160-6.
  • Silva RFO, Pinho BR, Santos MM, Oliveira JMA. 2022. Disruptions of circadian rhythms, sleep, and stress responses in zebrafish: new infrared-based activity monitoring assays for toxicity assessment. Chemosphere. 305:135449. Epub 2022 Jun 21. 10.1016/j.chemosphere.2022.135449
  • Skougstadt MW, Horr CA. 1960. Occurrence of strontium in natural water. United States Department of the Interior, Geological Survey water supply paper 1496-D. 7 p.
  • Sulukan E, Baran A, Şenol O, Kankaynar M, Yıldırım S, İ B, Ceyhun HA, Toraman E, Ceyhun SB. 2023. Global warming and glyphosate toxicity (I): adult zebrafish modelling with behavioural, immunohistochemical and metabolomic approaches. Sci Total Environ. Feb 1. 858(Pt 3):160086. Epub 2022 Nov 8. PMID: 36356745. doi:10.1016/j.scitotenv.2022.160086
  • Thoré ESJ, Brendonck L, Pinceel T. 2021. Natural daily patterns in fish behaviour may confound results of ecotoxicological testing. Environ Pollut. May 1. 276:116738. doi:10.1016/j.envpol.2021.116738.
  • Tilton FA, Bammler TK, Gallagher EP. 2011. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp Biochem Physiol C Toxicol Pharmacol. 153(1):9–16. doi:10.1016/j.cbpc.2010.07.008.
  • United Nations Educational, Scientific and Cultural Organization UNESCO. 2003. Primer informe de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos en el Mundo: Agua para todos, Agua para la vida. [First report of the United Nations on the Development of Water Resources in the World: Water for all, Water for life] 1st.ed. París, Francia. Ministerio del Medio Ambiente, España.
  • Valavanidis A, Vlachogianni T. 2010. Integrated biomarkers in aquatic organisms as a tool for biomonitoring environmental pollution and improved ecological risk assessment. Sci Adv Environ Toxicol Ecotoxicol. 10:325–333.
  • Vaze KM, Sharma VK. 2013. On the adaptive significance of circadian clocks for their owners. Chronobiol Int. 30(4):413–433. doi:10.3109/07420528.2012.754457.
  • Venegas-Érez C, Zúñiga-Lagunes S, Rosas-Pérez I, Hernández-Quiroz M, Ponce de León-Hill C, Cram-Heidrich S, editors. 2015. Procedimientos para la evaluación bioquímica del efecto tóxico de contaminantes. [Procedures for the biochemical evaluation of the toxic effect of pollutants]. 1st ed. México:Facultad de Ciencias, Universidad Nacional Autónoma de México. pp. 99309930
  • Wadleigh MA, Veizer J, Brooks C. 1985. Strontium and its isotopes in Canadian rivers: fluxes and global implications. Geochim Cosmochim Acta. 49(8):1727–1736. doi:10.1016/0016-7037(85)90143-7.
  • Wang B, Zhu J, Wang A, Wang J, Wu Y, Yao W. 2021. Early detection of cyanide, organophosphate and rodenticide pollution based on locomotor activity of zebrafish larvae. PeerJ. Dec 22. 9:e12703. doi:10.7717/peerj.12703.
  • Xia J, Niu C, Pei X. 2010. Effects of chronic exposure to nonylphenol on locomotor activity and social behavior in zebrafish (Danio rerio). J Environ Sci (China). 22(9):1435–1440. doi:10.1016/s1001-0742(09)60272-2.
  • Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Muller F, Strahle U. 2009. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol. 28(2):245–253. doi:10.1016/j.reprotox.2009.04.013.
  • Yang M, Ren B, Qiao L, Ren B, Hu Y, Zhao R, Ren Z, Du J. 2018. Behavior responses of zebrafish (Danio rerio) to aquatic environmental stresses in the characteristic of circadian rhythms. Chemosphere. 210:129–138. Epub 2018 Jul 5. 10.1016/j.chemosphere.2018.07.018
  • Zhao R, Hu Y, Li B, Chen M, Ren Z. Potential effects of internal physio-ecological changes on the online biomonitoring of water quality: the behavior responses with circadian rhythms of zebrafish (Danio rerio) to different chemicals. Chemosphere. 2020 Jan. 239:124752. doi:10.1016/j.chemosphere.2019.124752.
  • Zheng X, Zhang K, Zhao Y, Fent K. 2021. Environmental chemicals affect circadian rhythms: an unexplored effect influencing health and fitness in animals and humans. Environ Int. 149:106159. doi:10.1016/j.envint.2020.106159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.