38
Views
0
CrossRef citations to date
0
Altmetric
Reports

Photoperiod affects oxidative stress in the liver of Cricetulus barabensis through the Nrf2-Keap1 signaling pathway

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 694-706 | Received 07 Apr 2023, Accepted 20 Aug 2023, Published online: 30 Aug 2023

References

  • Atgié C, Le GS, Marti L, Hanoun N, Casteilla L, Pénicaud L, Ambid L, Carpéné C. 1998 Mar. Lipolytic and antilipolytic responses of the Siberian hamster (Phodopus sungorus) white adipocytes after weight loss induced by short photoperiod exposure. Comp Biochem Physiol A. 119(2):503–510. doi: 10.1016/s1095-6433(97)00457-1.
  • Baydaş G, Erçel E, Canatan H, Dönder E, Akyol A. 2001. Effect of melatonin on oxidative status of rat brain, liver and kidney tissues under constant light exposure. Cell Biochem Funct. 19(1):37–41. doi: 10.1002/cbf.897.
  • Bellezza I, Giambanco I, Minelli A, Donato R. 2018 May. Nrf2-Keap1 signaling in oxidative and reductive stress. Bba-Mol Cell Res. 1865(5):721–733. doi: 10.1016/j.bbamcr.2018.02.010
  • Chainy GB, Paital B, Dandapat J. 2016. An overview of seasonal changes in oxidative stress and antioxidant defence parameters in some invertebrate and vertebrate species. Scientifica. 2016:1–8. doi:10.1155/2016/6126570.
  • Cichoż-Lach H, Michalak A. 2014 Jul 7. Oxidative stress as a crucial factor in liver diseases. World J Gastroentero. 20(25):8082–8091. doi: 10.3748/wjg.v20.i25.8082.
  • Circu ML, Aw TY. 2010 Mar 15. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 48(6):749–762. doi: 10.1016/j.freeradbiomed.2009.12.022.
  • Cruz A, Padillo FJ, Granados J, Túnez I, Muñoz MC, Briceño J, Pera-Madrazo C, Montilla P. 2003 Dec. Effect of melatonin on cholestatic oxidative stress under constant light exposure. Cell Biochem Funct. 21(4):377–380. doi: 10.1002/cbf.1046
  • de la Vega MR, Chapman E, Zhang DD. 2018 Jul 9. NRF2 and the Hallmarks of cancer. Cancer Cell. 34(1):21–43. doi: 10.1016/j.ccell.2018.03.022.
  • Djordjevic A, Kotnik P, Horvat D, Knez Z, Antonic M. 2020 Dec. Pharmacodynamics of malondialdehyde as indirect oxidative stress marker after arrested-heart cardiopulmonary bypass surgery. Biomed Pharmacother. 132:132. doi:10.1016/j.biopha.2020.110877.
  • Escribano BM, Díaz-Moreno A, Tasset I, Túnez I, Ashton N. 2014. Impact of light/dark cycle patterns on oxidative stress in an adriamycin-induced nephropathy model in rats. PLoS One. 9(5):e97713. doi: 10.1371/journal.pone.0097713.
  • Farooqui MY, Ahmed AE. 1984 Jun 11. Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. Life Sci. 34(24):2413–2418. doi: 10.1016/0024-3205(84)90430-2.
  • Fukai T, Ushio-Fukai M. 2011 Sep 15. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 15(6):1583–1606. doi: 10.1089/ars.2011.3999.
  • Galasso M, Gambino S, Romanelli MG, Donadelli M, Scupoli MT. 2021. Browsing the oldest antioxidant enzyme: catalase and its multiple regulation in cancer. Free Radical Bio Med. Aug 20. 172:264–272. doi: 10.1016/j.freeradbiomed.2021.06.010.
  • He L, He T, Farrar S, Ji LB, Liu TY, Ma X. 2017. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 44(2):532–553. doi: 10.1159/000485089.
  • Jakubczyk K, Dec K, Kaldunska J, Kawczuga D, Kochman J, Janda K. 2020 Apr 22. Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski. 48(284):124–127.
  • Jaramillo MC, Zhang DD. 2013 Oct 15 . The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev. 27(20):2179–2191. doi: 10.1101/gad.225680.113.
  • Juarez-Tapia CR, Torres-Mendoza D, Duran P, Miranda-Anaya M. 2015 Nov. Short-day photoperiod disrupts daily activity and facilitates anxiety–depressive behaviours in gerbil Meriones unguiculatus. Biol Rhythm Res. 46(6):919–927. doi: 10.1080/09291016.2015.1066545
  • Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. 2017 Nov 19. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 19(11). doi: 10.1007/s11883-017-0678-6.
  • Mas-Bargues C, Escriva C, Dromant M, Borras C, Vina J. 2021. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch Biochem Biophys. 709:108941. doi: 10.1016/j.abb.2021.108941.
  • Matzkin ME, Valchi P, Riviere E, Rossi SP, Tavalieri YE, de Toro MM M, Mayerhofer A, Bartke A, Calandra RS, Frungieri MB. 2019 Sep. Aging in the Syrian hamster testis: Inflammatory-oxidative status and the impact of photoperiod. Exp Gerontol. 124:110649. doi:10.1016/j.exger.2019.110649.
  • Moustafa A. 2021 Apr 15. Chronic exposure to continuous brightness or darkness modulates immune responses and ameliorates the antioxidant enzyme system in male rats. Front Vet Sci. 8. doi: 10.3389/fvets.2021.621188.
  • Nemmiche S. 2017. Oxidative signaling response to Cadmium exposure. Toxicol Sci Mar. 156:4–10. doi:10.1093/toxsci/kfw222.
  • Nguyen T, Nioi P, Pickett CB. 2009 May 15. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 284(20):13291–13295. doi: 10.1074/jbc.R900010200.
  • Pal S, Haldar C, Verma R. 2022 Oct. Impact of photoperiod on uterine redox/inflammatory and metabolic status of golden hamster, Mesocricetus auratus. J Exp Zool Part A. 337(8):812–822. doi: 10.1002/jez.2638
  • Panday A, Sahoo MK, Osorio D, Batra S. 2015 Jan. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 12(1):5–23. doi: 10.1038/cmi.2014.89
  • Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. 2017. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017:1–13. doi:10.1155/2017/8416763.
  • Porcu A, Riddle M, Dulcis D, Welsh DK. 2018. Photoperiod-induced Neuroplasticity in the Circadian System. Neural Plast. 2018:1–13. doi:10.1155/2018/5147585.
  • Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. 2011 Mar. SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol. 31(6):1121–1133. doi: 10.1128/MCB.01204-10.
  • Robinson MW, Harmon C, O’Farrelly C. 2016 May. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 13(3):267–276. doi: 10.1038/cmi.2016.3.
  • Rojo AI, Medina-Campos ON, Rada P, Zúñiga-Toalá A, López-Gazcón A, Espada S, Pedraza-Chaverri J, Cuadrado A. 2012 Jan 15. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: role of glycogen synthase kinase-3. Free Radic Biol Med. 52(2):473–487. doi: 10.1016/j.freeradbiomed.2011.11.003.
  • Schieber M, Chandel NS. 2014 May 19. ROS function in redox signaling and oxidative stress. Curr Biol. 24(10):R453–462. doi: 10.1016/j.cub.2014.03.034.
  • Shin SK, Cho HW, Song SE, Song DK. 2018 Dec. Catalase and nonalcoholic fatty liver disease. Pflugers Arch -European J Physiol. 470(12):1721–1737. doi: 10.1007/s00424-018-2195-z
  • Singh SS, Deb A, Sutradhar S. 2020 Nov. Effect of melatonin on arsenic-induced oxidative stress and expression of MT1 and MT2 receptors in the kidney of laboratory mice. Biol Rhythm Res. 51(8):1216–1230. doi: 10.1080/09291016.2019.1566993
  • Sun HJ, Ding S, Guan DX, Ma LQ. 2022 Sep. Nrf2/Keap1 pathway in countering arsenic-induced oxidative stress in mice after chronic exposure at environmentally-relevant concentrations. Chemosphere. 303:303. doi:10.1016/j.chemosphere.2022.135256.
  • Suzuki T, Yamamoto M. 2015 Nov. Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med. 88:93–100. doi:10.1016/j.freeradbiomed.2015.06.006.
  • Wang CL, Wang Z, Mou JJ, Wang S, Zhao XY, Feng YZ, Xue HL, Wu M, Chen L, Xu JH, et al. 2022. Short photoperiod reduces oxidative stress by Up-Regulating the Nrf2–Keap1 signaling pathway in hamster Kidneys. J Evol Biochem Physiol. 58(2):418–429. doi: 10.1134/S0022093022020107.
  • Wang Z, Xu JH, Mou JJ, Kong XT, Wu M, Xue HL, Xu LX. 2020. Photoperiod affects Harderian gland morphology and secretion in female Cricetulus barabensis: Autophagy, Apoptosis, and Mitochondria. Front Physiol. 11(11):408. doi: 10.3389/fphys.2020.00408.
  • Wang S, Xu JH, Zhao XY, Feng YZ, Xu WL, Xue HL, Wu M, Xu LX. 2023. Small RNA-seq and hormones in the testes of dwarf hamsters (Cricetulus barabensis) reveal the potential pathways in photoperiod regulated reproduction. Heliyon. 9(5):15687. doi: 10.1016/j.heliyon.2023.e15687.
  • Zhao ZJ, Chi QS, Cao J, Wang DH. 2014 Mar-Apr. Seasonal changes of body mass and energy budget in striped hamsters: the role of leptin. Physiol Biochem Zool. 87(2):245–256. doi: 10.1086/674974.
  • Zhao XY, Wang S, Xu JH, Wang CL, Feng YZ, Xue HL, Wu M, Chen L, Xu LX. 2022. Effects of short daylight and mild low temperature on mitochondrial degeneration in the testis of Cricetulus barabensis. Molecular Reproduction Devel. 89(9):413–422. doi: 10.1002/mrd.23632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.