150
Views
2
CrossRef citations to date
0
Altmetric
Articles

A Search for Structural Similarities of Oral Musical Traditions in Eurasia and America Using the Self Organizing Cloud Algorithm

Pages 196-218 | Received 25 Aug 2014, Accepted 04 Jun 2015, Published online: 17 Sep 2015

References

  • Aarden, B., & Huron, D. (2001). Mapping European folksong: Geographical localization of musical features. Computing in Musicology, 12, 169–183.
  • Ali-MacLachlan, I., Köküer, M., Jancovic, P., Williams, I., & Athwal, C. (2013). Quantifying timbral variations in traditional Irish flute playing. In P. van Kranenburg, C. Anagnostopoulou, & A. Volk (Eds.), Proceedings of the Third International Workshop on Folk Music Analysis, June 6–7, 2013. Amsterdam, Netherlands (pp. 7–14). Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.
  • Aloupis, G., Fevens, T., Langerman, S., Matsui, T., Mesa, A., Nunez, Y., ... Toussaint, G. T. (2006). Algorithms for computing geometric measures of melodic similarity. Computer Music Journal, 30(3), 67–76.
  • Bartók, B. (1937). Folk song research and nationalism. Reprinted in Benjamin Suchoff (Ed.) (1976), Béla Bartók Essays. London: Faber and Faber.
  • Bartók, B. (1949). On collecting folk songs in Turkey. Tempo, New Ser., No. 13, Bartók Number, (Autumn), 15–19+38
  • Bartók, B. (1976). Turkish Folk Music from Asia Minor, ed. Benjamin Suchoff, with an afterword by Kurt Reinhard, Princeton: Princeton University Press.
  • Bayard, S.P. (1950). Prolegomena to a study of the principal melodic families of British-American folk song. Journal of American Folklore, 63 (247), 1–44.
  • Bello, J. P. (2011). Measuring structural similarity in music. IEEE Transactions on Audio, Speech, and Language, 19(7), 2013–2025.
  • Bigand, E., Vieillard, S., Madurell, F., Marozeau, J., & Dacquet, A. (2005). Multidimensional scaling of emotional responses to music: The effect of musical expertise and of the duration of the excerpts. Cognition and Emotion, 19(8), 1113–1139.
  • Borg, I., & Groenen, P. (2005). Modern multidimensional scaling: Theory and applications (2nd ed.). New York: Springer-Verlag.
  • Brown, S., Savage, P.E., Ko, A.M.-S., Stoneking, M., Ko, Y.-C., Loo, J.-H., & Trejaut, J.A. (2013). Correlations in the population structure of music, genes and language. Proceedings of the Royal Society B [online], 281(1774), 20132072. doi:10.1098/rspb.2013.2072
  • Cross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930, 28–42.
  • Cross, I. (2009). The evolutionary nature of musical meaning. Musicae Scientiae, 13(2 suppl), 179–200.
  • Csébfalvy, K., Havass, M., Járdányi, P., & Vargyas, L. (1965). Systematization of tunes by computers, VII 253–257.
  • Conklin, D. (2013). Folk tune classification with multiple viewpoints. In P. van Kranenburg, C. Anagnostopoulou, & A. Volk (Eds.), Proceedings of the Third International Workshop on Folk Music Analysis, June 6–7, 2013 (pp. 99–100). Amsterdam: Utrecht University.
  • Corpus Musicae Popularis Hungaricae l-XII. (1951–2012), Budapest: Balassi Institute.
  • Cowdery, J.R. (1984). A fresh look at the concept of tune family. Ethnomusicology, 28(3), 495–504.
  • Dahlig-Turek, E. (2013). Analysis of ‘Polish rhythms’. In P. van Kranenburg, C. Anagnostopoulou, & A. Volk (Eds.), Proceedings of the Third International Workshop on Folk Music Analysis, June 6–7, 2013. Amsterdam, Netherlands (pp. 104–105). Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.
  • Demartines, P., & Herault, J. (1997). Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks, 8(1), 148–154.
  • De Poli, G., & Prandoni, P. (1997). Sonological models for timbre characterization. Journal of New Music Research, 26, 170–97.
  • Dobszay, L., & Szendrei, J. (1988). A magyar népdaltípusok katalógusa [Catologue of Hungarian folksong types] (In Hungarian). Budapest: MTA Zenetudományi Intézet.
  • Eastlund, J. O. (1992). A multidimensional scaling analysis of musical style. Journal of Research in Music Education, 40(3), 204–215.
  • Eerola, T., Järvinen, T., Louhivuori, J., & Toiviainen, P. (2001). Statistical features and perceived similarity of folk melodies. Music Perception, 18, 275–296.
  • Estévez, P. A., & Figuerora, C. J. (2006). Online data visualization using the neural gas network. Neural Networks, 19, 923–934.
  • Freeman, I., & Merriam, A. (1956). Statistical classification in anthropology: an application to ethnomusicology. American Anthropologist, 58, 464–472.
  • Forgy, E.W. (1965). Cluster analysis of multivariate data: Efficiciency versus interpretability of classifications. Biometrics, 21, 768–769.
  • Fouloulis, T., Pikrakis, A., & Cambouropoulos, E. (2013). Traditional asymmetric rhythms: a refined model of meter induction based on asymmetric meter templates. In P. van Kranenburg, C. Anagnostopoulou, & A. Volk (Eds.), Proceedings of the Third International Workshop on Folk Music Analysis, June 6–7, 2013. Amsterdam, Netherlands (pp. 28–33). Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.
  • Goebel, T. (2008). The Late Pleistocene dispersal of modern humans in the Americas. Science, 319(5869), 1497–1502.
  • Grey, J.M. (1977). Multidimensional perceptual scaling of musical timbres. Journal of the Acoustical Society of America, 61(5), 1270–1277.
  • Hourdin, C., Charbonneau, G., & Moussa, T. (1997a). A multidimensional scaling analysis of musical instruments’ time-varying spectra. Computer Music Journal, 21(2), 40–55.
  • Hourdin, C., Charbonneau, G., & Moussa, T. (1997b). A sound-synthesis technique based on multidimensional scaling of spectra. Computer Music Journal, 21(2), 56–68.
  • Huron, D. (1996). The melodic arch in Western folksongs. Computing in Musicology, 10, 3–23.
  • Járdányi, P. (1974). Experiences and results in systematizing Hungarian folksongs (pp. 17–20). XXII: Studia Musicologica.
  • Juhász, Z. (2000). A model of variation in the music of a Hungarian ethnic group. Journal of New Music Research, 29(2), 159–172.
  • Juhász, Z. (2006). A systematic comparison of different European folk music traditions using self-organising maps. Journal of New Music Research, 35(2), 95–112.
  • Juhász, Z. (2011). Low dimensional visualisation of folk music systems using the self organising cloud. Proceedings of 12th International Society for Music Information Retrieval (ISMIR 2011) (pp. 299–304). Canada: International Society for Music Information Retrieval.
  • Juhász, Z. (2012). A mathematical study of note association paradigms in different folk music cultures. Journal of Mathematics and Music, 6(3), 169–185.
  • Juhász, Z., & Sipos, J. (2009). A comparative analysis of Eurasian folksong corpora, using self organising maps. Journal of Interdisciplinary Music Studies, Advance online publication doi:10.4407/jims.2009.11.005
  • Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., & Wu, A.Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 881–892. doi:10.1109/TPAMI.2002.1017616
  • Kodály, Z. (1971). Folk music of Hungary. Budapest: Corvina.
  • Kohonen, T. (1995). Self-organising maps. Berlin: Springer-Verlag.
  • Krohn, I. (1899). Über die Art und Entstehung der geistlichen Volksmelodien in Finland. Helsingfors: Väitöskirja.
  • Lartillot, O., Yazıcı, Y.F., & Mungan, E. (2013). A more informative segmentation model, empirically compared with state of the art on traditional Turkish music. In P. van Kranenburg, C. Anagnostopoulou, & A. Volk (Eds.), Proceedings of the Third International Workshop on Folk Music Analysis, June 6–7, 2013. Amsterdam, Netherlands (pp. 63–70). Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.
  • Lee, J. A., Lendasse, A., & Verleysen, M. (2004). Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 57, 49–76.
  • Leman, M. (2000). An auditory model of the role of short-term memory in probe-tone ratings. Music Perception, 17(4), 481–509.
  • Lomax, A. (1968). Folk song style and culture. With contributions by Conrad Arensberg, Edwin E. Erickson, Victor Grauer, Norman Berkowitz, Irmgard Bartenieff, Forrestine Paulay, Joan Halifax, Barbara Ayres, Norman N. Markel, Roswell Rudd, Monika Vizedom, Fred Peng, Roger Wescott, David Brown (American Association for the Advancement of Science, Publication no. 88). Washington, DC: Colonial Press.
  • Martinetz, T., & Schulten, K. (1991). A ‘neural gas’ network learns topologies. In T. Kohonen, K. Mäkisara, O. Simula, & J. Kangas (Eds.), Artificial Neural Networks (pp. 397–402). Amsterdam: Elsevier.
  • Müllensiefen, D., & Frieler, K. (2004a). Cognitive adequacy in the measurement of melodic similarity: Algorithmic vs. human judgments. Computing in Musicology, 13, 147–176.
  • Müllensiefen, D., & Frieler, K. (2004b). Optimizing measures of melodic similarity for the exploration of a large folk song database. Proceedings of the ISMIR 2004 (8pp). Barcelona: Universitat Pompeu Fabra.
  • Müller, M., Grosche, P., & Jiang, N. (2011). A segment-based fitness measure for capturing repetitive structures of music recordings. Proceedings of 12th ISMIR Conference (ISMIR 2011) (pp. 615–620). Canada: International Society for Music Information Retrieval.
  • Nettl, B. (1965/1989). Folk and traditional music of the Western continents. Engelwood Cliffs, NJ: Prentice-Hall.
  • Nettl, B. (2005). The study of ethnomusicology: Thirty-one issues and concepts. Champaign, IL: University of Illinois Press.
  • Pamjav, H., Juhász, Z., Németh, E., & Zalán, A. (2012). A comparative phylogenetic study of genetics and folk music. Molecular Genetics and Genomics, 287(4), 337–349. doi:10.1007/s00438-012-0683-y
  • Samson, S., Zatorre, R. J., & Ramsay, J. (1997). Multidimensional scaling of synthetic musical timbre: Perception of spectral and temporal characteristics. Canadian Journal of Experimental Psychology, 51(4), 307–315.
  • Schmuckler, M.A. (1999). Testing models of melodic contour similarity. Music Perception, 16(3), 109–150.
  • Selfridge-Field, E. (2004). Towards a measure of cognitive distance in melodic similarity. Computing in Musicology, 13, 93–112.
  • Six, J., & Cornelis, O. (2013). Computer-assisted transcription of ethnic music. In P. van Kranenburg, C. Anagnostopoulou, & A. Volk (Eds.), Proceedings of the Third International Workshop on Folk Music Analysis, June 6–7, 2013. Amsterdam, Netherlands (pp. 71–73). Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.
  • Szendrei, J., Dobszay, L., & Rajeczky, B. (1979). XVI-XVII. századi dallamaink a népi emlékezetben [Hungarian melodies transcribed in the 16-17th centuries living in the musical folklore]. Budapest: Akadémiai Kiadó.
  • Taguchi, Y.H., & Oono, Y. (2005). Gene expression relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics, 21(6), 730–740.
  • Toiviainen, P. (1996). Optimizing auditory images and distance metrics for self-organizing timbre maps. Journal of New Music Research, 25, 1–30.
  • Toiviainen, P. (2000). Symbolic AI versus connectionism in music research. In E. Mirinda (Ed.), Readings in music and artificial intelligence. Amsterdam: Harwood Academic Publishers.
  • Toiviainen, P., & Eerola, T. (2002). A computational model of melodic similarity based on multiple representations and self-organizing maps. In C. Stevens, D. Burham, G. McPherson, E. Schubert, & J. Rewick (Eds.), Proceedings of the 7th International Conference on Music Perception and Cognition, Sidney, 2002 (pp. 236–239). Adelaide: Causal Productions.
  • Typke, R., Wiering, F., & Veltkamp, R.C. (2007). Transportation distances and human perception of melodic similarity. Musicae Scientiae, Discussion Forum, 4A, 153–182.
  • Van Kranenburg, P., Garbers, J., Volk, A., Wiering, F., Grijp, L.P., & Veltkamp, R.C. (2009a). Collaboration perspectives for folk song research and music information retrieval: The indispensable role of computational musicology. Journal of Interdisciplinary Music Studies, 4(1), 17–43.
  • Van Kranenburg, P., Volk, A., Wiering, F., & Veltkamp, R.C. (2009b). Musical models for folk-song melody alignment. In K. Hirata, G. Tzanetakis, & K. Yoshii (Eds.), 10th International Society for Music Information Retrieval Conference (ISMIR 2009) (pp. 507–512). Canada: International Society for Music Information Retrieval.
  • Vargyas, L. (1980). The prehistory of Hungarian folk music. (In Hungarian. A magyar zene őstörténete I-II.) Ethnographia 91 (1), 1–34; 91(2), 192--236.
  • Velarde, G., Weyde, T., & Meredith, D. (2013). Wavelet-filtering of symbolic music representations for folk tune segmentation and classification. In P. van Kranenburg, C. Anagnostopoulou, & A. Volk (Eds.), Proceedings of the Third International Workshop on Folk Music Analysis, June 6–7, 2013. Amsterdam, Netherlands (pp. 56–62). Amsterdam: Meertens Institute, Utrecht: Department of Information and Computing Sciences, Utrecht University.
  • Vikár, L. (1958). Chinese folksongs with answers at the interval of a fifth (pp. 430–432). VII: Acta Ethnographica.
  • Vikár, L., & Bereczki, G. (1971). Cheremis folksongs. Budapest: Akadémiai Kiadó.
  • Vikár, L., & Bereczki, G. (1979). Chuvashs folksongs. Budapest: Akadémiai Kiadó.
  • Wiora, W. (1950). Europäischer Volksgesang. Gemeinsame Formen in charakteristischen Abwandlungen. Köln: Arno Volk Verlag.
  • Zhang, J., Harbottle, G., Wang, Ch, & Kong, Zh. (1999). Oldest playable musical instruments found at Jiahu early Neolithic site in China. Nature, 401, 366–368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.