484
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Modelling Melodic Discrimination Tests: Descriptive and Explanatory Approaches

, &
Pages 265-280 | Received 19 Oct 2015, Accepted 25 May 2016, Published online: 22 Jun 2016

References

  • Akiva-Kabiri, L., Vecchi, T., Granot, R., Basso, D., & Schön, D. (2009). Memory for tonal pitches: A music-length effect hypothesis. Annals of the New York Academy of Sciences, 1169, 266–269. doi:10.1111/j.1749-6632.2009.04787.x
  • Aloupis, G., Fevens, T., Langerman, S., Matsui, T., Mesa, A., Nuñez, Y., Rappaport, D., & Toussaint, G. (2006). Algorithms for computing geometric measures of melodic similarity. Computer Music Journal, 30(3), 67–76. doi:10.1162/comj.2006.30.3.67
  • Andersen, E.B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38(1), 123–140.
  • Avron, A. (2012). Reliability and validity of the Gold-MSI, and links between musicality and intelligence (Master’s dissertation). Goldsmiths College, University of London, UK.
  • Bartlett, J.C., & Dowling, W.J. (1980). Recognition of transposed melodies: A key-distance effect in developmental perspective. Journal of Experimental Psychology: Human Perception and Performance, 6(3), 501–515.
  • Bartlett, J.C., & Dowling, W.J. (1988). Scale structure and similarity of melodies. Music Perception, 5(3), 285–314.
  • Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Linear mixed-effects models using Eigen and S4. Retrieved from https://cran.r-project.org/package=lme4
  • Bentley, A. (1966). Measures of musical abilities. London: George A. Harrap.
  • Bharucha, J.J., & Pryor, J.H. (1986). Disrupting the isochrony underlying rhythm: An asymmetry in discrimination. Perception & Psychophysics, 40(3), 137–141. doi:10.3758/bf03203008
  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In: F.M. Lord, & M.R, Novick. (Authors). Statistical theories of mental test scores (with contributions by A. Birnbaum, pp. 397-479). Reading, MA: Addison-Wesley.
  • Boltz, M. (1991). Some structural determinants of melody recall. Memory & Cognition, 19(3), 239–251. doi:10.3758/BF03211148
  • Bond, T.G., & Fox, C.M. (2015). Applying the Rasch model: Fundamental measurement in the human sciences. New York: Routledge.
  • Brittin, R.V. (2000). Perception and recall of melodic and rhythmic patterns: Effects of example length and tonal/rhythmic variety. In C. Mizener (Ed.), Texas music education research 2000 (pp. 17–25). Austin, TX: Texas Music Educators Association.
  • Carroll, J.B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.
  • Crawford, T., Ilipoulos, C.S., & Raman, R. (1998). String-matching techniques for musical similarity and melodic recognition. In W. B. Hewlett & E. Selfridge-Field (Eds.), Computing in musicology. Vol. 11. Melodic similarity: Concepts, procedures, and applications (pp. 73–199): Cambridge, MA: MIT Press.
  • Croonen, W.L. (1994). Effects of length, tonal structure, and contour in the recognition of tone series. Perception & Psychophysics, 55(6), 623–632. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8058450
  • Cuddy, L.L., Cohen, A.J., & Mewhort, D.J.K. (1981). Perception of structure in short melodic sequences. Journal of Experimental Psychology: Human Perception and Performance, 7(4), 869–883.
  • Cuddy, L.L., Cohen, A.J., & Miller, J. (1979). Melody recognition: The experimental application of musical rules. Canadian Journal of Psychology, 33(3), 148–157. doi:10.1037/h0081713
  • Cuddy, L.L., & Lyons, H.I. (1981). Musical pattern recognition: A comparison of listening to and studying tonal structures and tonal ambiguities. Psychomusicology: A Journal of Research in Music Cognition, 1(2), 15–33. doi:10.1037/h0094283
  • de Ayala, R.J. (2009). The theory and practice of item response theory. New York: The Guilford Press.
  • de Boeck, P., Bakker, M., Zwitser, R., Nivard, M., Hofman, A., Tuerlinckx, F., & Partchev, I. (2011). The estimation of item response models with the lmer function from the lme4 package in R. Journal of Statistical Software, 39(12).
  • de Boeck, P., & Wilson, M. (2004). Descriptive and explanatory response models. Explanatory item response models: A generalized linear and nonlinear approach (pp. 43–74). New York, NY: Springer. doi:10.1007/978-1-4757-3990-9
  • DeMars, C. (2010). Item response theory. New York, NY: Oxford University Press.
  • DeWitt, L.A., & Crowder, R.G. (1986). Recognition of novel melodies after brief delays. Music Perception, 3(3), 259–274.
  • Doran, H., Bates, D., Bliese, P., & Dowling, M. (2007). Estimating the multilevel Rasch model: With the lme4 package. Journal of Statistical Software, 20(2), 1–18. doi:10.1111/j.1467-9868.2007.00600.x
  • Dowling, W.J. (1971). Recognition of nversions of melodies and melodic contours. Perception & Psychophysics, 9(3), 348–349. doi:10.3758/BF03212663
  • Dowling, W.J. (1978). Scale and contour: Two components of a theory of memory for melodies. Psychological Review, 85(4), 341–354.
  • Dowling, W.J. (1991). Tonal strength and melody recognition after long and short delays. Perception & Psychophysics, 50(4), 305–313.
  • Dowling, W.J., & Bartlett, J.C. (1981). The importance of interval information in long-term memory for melodies. Psychomusicology: A Journal of Research in Music Cognition, 1(1), 30–49.
  • Dowling, W.J., Bartlett, J.C., Halpern, A.R., & Andrews, M.W. (2008). Melody recognition at fast and slow tempos: Effects of age, experience, and familiarity. Perception & Psychophysics, 70(3), 496–502. doi:10.3758/PP
  • Dowling, W.J., & Fujitani, D.S. (1971). Contour, interval, and pitch recognition in memory for melodies. Journal of the Acoustical Society of America, 49(2B), 524–531. doi:10.1121/1.1912382
  • Downie, J.S. (2003). Music information retrieval. In B. Cronin,. (Ed.) Annual review of information science and technology. 37 (pp. 295–340). Medford, NJ: Information Today. doi:10.1002/aris.1440370108
  • Edworthy, J. (1985). Interval and contour in melody processing. Music Perception, 2(3), 375–388.
  • Eerola, T. (2006). Perceived complexity of western and African folk melodies by western and African listeners. Psychology of Music, 34(3), 337–371. doi:10.1177/0305735606064842
  • Eerola, T., & Bregman, M. (2007). Melodic and contextual similarity of folk song phrases. Musicae Scientiae, Disc. 4A, 211–233. doi:10.1177/102986490701100109
  • Egan, D.E., & Schwartz, B.J. (1979). Chunking in recall of symbolic drawings. Memory & Cognition, 7(2), 149–58. doi:10.3758/BF03197595
  • Embretson, S.E. (1983). Construct validity: Construct representation versus nomothetic span. Psychological Bulletin, 93(1), 179–197. doi:10.1037/0033-2909.93.1.179
  • Engle, R.W., & Bukstel, L.H. (1978). Memory processes among bridge players of differing expertise. American Journal of Psychology, 91(4), 673–689. doi:10.2307/1421515
  • Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37(6), 359–374. doi:10.1016/0001-6918(73)90003-6
  • Gaston, E.T. (1957). A test of musicality: Manual of directions. Lawrence, KA: Odell’s Instrumental Service.
  • Gierl, M.J. (2013). Automatic item generation: An introduction. In M.J. Gierl & T.M. Haladyna (Eds.), Automatic item generation: Theory and practice. New York: Routledge.
  • Gigerenzer, G., & Murray, D.J. (1987). Cognition as intuitive statistics. Hillsdale, NJ: Lawrence Erlbaum.
  • Gobet, F., & Simon, H.A. (1998). Expert chess memory: revisiting the chunking hypothesis. Memory, 6(3), 225–255. doi:10.1080/741942359
  • Gordon, E.E. (1965). Musical aptitude profile. Boston, MA: Houghton Mifflin.
  • Gordon, E.E. (1982). Intermediate measures of music audiation. Chicago, IL: G.I.A. Publications.
  • Gordon, E.E. (1989). Advanced measures of music audiation. Chicago, IL: G.I.A. Publications.
  • Grachten, M., Arcos, J.L., & de Mantaras, R.L. (2005, September). Melody retrieval using the Implication/Realization model. Paper presented at IMIREX-ISMIR 2005: 6th International Conference on Music Information Retrieval, London, England.
  • Gulliksen, H. (1950). Theory of mental tests. New York: Wiley.
  • Halpern, A.R., Bartlett, J.C., & Dowling, W.J. (1995). Aging and experience in the recognition of musical transpositions. Psychology and Aging, 10(3), 325–342.
  • Harrison, P.M.C. (2015). Constructing computerised adaptive tests of musical listening abilities (Master’s dissertation). Goldsmiths College, University of London, UK.
  • Hu, X., Ackermann, H., Martin, J.A., Erb, M., Winkler, S., & Reiterer, S.M. (2013). Language aptitude for pronunciation in advanced second language (L2) learners: Behavioural predictors and neural substrates. Brain and Language, 127(3), 366–376. doi:10.1016/j.bandl.2012.11.006
  • Knoblauch, K. (2014). psyphy: Functions for analyzing psychophysical data in R. Retrieved from http://cran.r-project.org/package=psyphy
  • Krumhansl, C.L. (1990). Cognitive foundations of musical pitch. New York: Oxford University Press.
  • Krumhansl, C.L., & Kessler, E.J. (1982). Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review, 89(4), 334–368. doi:10.1037/0033-295X.89.4.334
  • Kühnis, J., Elmer, S., Meyer, M., & Jäncke, L. (2012). Musicianship boosts perceptual learning of pseudoword-chimeras: An electrophysiological approach. Brain Topography, 26(1), 110–125. doi:10.1007/s10548-012-0237-y
  • Kühnis, J., Elmer, S., Meyer, M., & Jäncke, L. (2013). The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study. Neuropsychologia, 51(8), 1608–1618. doi:10.1016/j.neuropsychologia.2013.04.007
  • Law, L.N.C., & Zentner, M. (2012). Assessing musical abilities objectively: Construction and validation of the Profile of Music Perception Skills. PLoS ONE, 7(12), e52508. doi:10.1371/journal.pone.0052508
  • Lord, F.M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.
  • Macmillan, N.A., & Creelman, C.D. (2005). Detection theory: A user’s guide. New York: Lawrence Erlbaum.
  • Mair, P., & Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal Of Statistical Software, 20(9), 1–20.
  • Meek, C., & Birmingham, W.P. (2001, October). Thematic extractor. In Paper presented at the 2nd Annual International Symposium on Music Information Retrieval (ISMIR 2001), Bloomington, Indiana, USA.
  • Mehr, S.A., Schachner, A., Katz, R.C., & Spelke, E.S. (2013). Two randomized trials provide no consistent evidence for nonmusical cognitive benefits of brief preschool music enrichment. PLoS ONE, 8(12), e82007. doi:10.1371/journal.pone.0082007
  • Mehr, S.A., Song, L.A., & Spelke, E.S. (2016). For 5-month-old infants, melodies are social. Psychological Science, 27(4), 486–501. doi:10.1177/0956797615626691
  • Messick, S. (1989). Validity. In R.L. Linn (Ed.), Educational measurement (pp. 13–103). Washington, DC: American Council on Education.
  • Messick, S. (1995). Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50(9), 741–749. doi:10.1037/0003-066X.50.9.741
  • Mikumo, M. (1992). Encoding strategies for tonal and atonal melodies. Music Perception, 10(1), 73–82.
  • Mongeau, M., & Sankoff, D. (1990). Comparison of musical sequences. Computers and the Humanities, 24(3), 161–175.
  • Müllensiefen, D. (2009). FANTASTIC: Feature ANalysis Technology Accessing STatistics (In a Corpus) (Technical Report v. 1.5). London: Goldsmiths, University of London. Retrieved from http://www.doc.gold.ac.uk/isms/m4s/FANTASTIC_docs.pdf
  • Müllensiefen, D., & Frieler, K. (2004, October). Melodic similarity: Approaches and applications. In Paper presented at the 8th International Conference on Music Perception & Cognition, Evanston, Illinois, USA.
  • Müllensiefen, D., & Frieler, K. (2007). Modelling experts’ notions of melodic similarity. Musicae Scientiae, Disc. 4A, 183–210. doi:10.1177/102986490701100108
  • Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLoS ONE, 9(2), e89642. doi:10.1371/journal.pone.0089642
  • Müllensiefen, D., Gingras, B., Stewart, L. & Musil, J. (2013). Goldsmiths Musical Sophistication Index (Gold-MSI) v1.0 (Technical Report and Documentation Revision 0.3). London: Goldsmiths, University of London.. Retrieved from http://www.gold.ac.uk/music-mind-brain/gold-msi/publications/
  • Müllensiefen, D., & Pendzich, M. (2009). Court decisions on music plagiarism and the predictive value of similarity algorithms. Musicae Scientiae, 13(1 Suppl), 257–295. doi:10.1177/102986490901300111
  • Murtaugh, P.A. (2014). In defense of P values. Ecology, 95(3), 611–617.
  • Novick, M.R. (1966). The axioms and principal results of classical test theory. Journal of Mathematical Psychology, 3(1), 1–18. doi:10.1016/0022-2496(66)90002-2
  • O’Maidin, D. (1998). A geometrical algorithm for melodic difference in melodic similarity. In W.B. Hewlett & E. Selfridge-Field (Eds.), Melodic similarity: Concepts, procedures, and applications (Computing in Musicology 11). Cambridge, MA: The MIT Press.
  • Pick, A.D., Palmer, C.F., Hennessy, B.L., Unze, M.G., Jones, R.K., & Richardson, R.M. (1988). Children’s perception of certain musical properties: Scale and contour. Journal of Experimental Child Psychology, 45, 28–51.
  • Prince, J.B. (2014). Contributions of pitch contour, tonality, rhythm, and meter to melodic similarity. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2319–2337.
  • R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.r-project.org/
  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Chicago, IL: University of Chicago Press.
  • Rizopoulos, D. (2006). ltm: An R package for latent variable modeling and item response theory analyses. Journal of Statistical Software, 17(5), 1–25.
  • Scalise, K., & Allen, D.D. (2015). Use of open-source software for adaptive measurement: Concerto as an R-based computer adaptive development and delivery platform. British Journal of Mathematical and Statistical Psychology, 68(3), 478–496. doi:10.1111/bmsp.12057
  • Schmidt, K.M. & Embretson, S.E. (2003). Item Response Theory and measuring abilities. In J.A. Schinka, W.F. Velicer, & I.B. Weiner (Eds.), Handbook of psychology: Research methods in psychology (pp. 429–446). Hoboken, NJ: John Wiley & Sons.
  • Schmuckler, M. A. (2009). Components of melodic processing. In S. Hallam, I. Cross, & M. Thaut (Eds.), The Oxford handbook of music psychology. New York: Oxford University Press.
  • Schulze, K., Dowling, W.J., & Tillmann, B. (2012). Working memory for tonal and atonal sequences during a forward and backward recognition task. Music Perception, 29(3), 255–267.
  • Seashore, C.E. (1919). The psychology of musical talent. Boston, MA: Silver, Burdett and Company.
  • Steinbeck, W. (1982). Struktur und Ähnlichkeit: Methoden automatisierter Melodieanalyse. In Kieler Schriften zur Musikwissenschaft XXV. Kassel, Germany: Bärenreiter.
  • Takeuchi, A.H., & Hulse, S.H. (1992). Key-distance effects in melody recognition reexamined. Music Perception, 10(1), 1–23.
  • Typke, R., Wiering, F., & Veltkamp, R.C. (2007). Transportation distances and human perception of melodic similarity. Musicae Scientiae, Disc. 4A, 153–181. doi:10.1177/102986490701100107
  • Uitdenbogerd, A.L. (2002). Music information retrieval technology. Doctoral dissertation. RMIT University, Melbourne, Victoria.
  • Ullén, F., Mosing, M.A., Holm, L., Eriksson, H., & Madison, G. (2014). Psychometric properties and heritability of a new online test for musicality, the Swedish Musical Discrimination Test. Personality and Individual Differences, 63, 87–93. doi:10.1016/j.paid.2014.01.057
  • Unyk, A.M., Trehub, S.E., Trainor, L.J., & Schellenberg, E.G. (1992). Lullabies and simplicity: A cross-cultural perspective. Psychology of Music, 20(1), 15–28. doi:10.1177/0305735692201002
  • van der Linden, W.J., & Glas, C.A.W. (2007). Statistical aspects of adaptive testing. Handbook of Statistics, 26(6), 801–838. doi:10.1016/S0169-7161(06)26025-5
  • Vispoel, W.P. (1993). The development and evaluation of a computerized adaptive test of tonal memory. Journal of Research in Music Education, 41(2), 111–136. doi:10.2307/3345403
  • Wallentin, M., Nielsen, A.H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The musical ear test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188–196. doi:10.1016/j.lindif.2010.02.004
  • Watkins, A.J. (1985). Scale, key, and contour in the discrimination of tuned and mistuned approximations to melody. Perception & Psychophysics, 37(4), 275–285. doi:10.3758/BF03211349
  • Wechsler, D. (2011). Wechsler abbreviated scale of intelligence II. San Antonio, TX: Psychological Corporation.
  • Wing, H.D. (1961). Standardised tests of musical intelligence. The Mere, UK: National Foundation for Educational Research.
  • Zenatti, A. (1975). Melodic memory tests: A comparison of normal children and mental defectives. Journal of Research in Music Education, 23(1), 41–52. doi:10.2307/3345202

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.