372
Views
22
CrossRef citations to date
0
Altmetric
Technological Contributions

An ubiquitous smart guitar system for collaborative musical practice

ORCID Icon &
Pages 352-365 | Received 18 Feb 2019, Accepted 21 Jun 2019, Published online: 05 Jul 2019

References

  • Barreiro, D., & Traldi, C. (2018). Musical conceptions and strategies in creative activities with mobile devices. Proceedings of the eight workshop on ubiquitous music, Sao Joao del Rei (pp. 132–143).
  • Berdahl, E. (2014). How to make embedded acoustic instruments. Proceedings of the conference on new interfaces for musical expression, London (pp. 140–143).
  • Bødker S. (2015). Third-wave HCI, 10 years later—participation and sharing. Interactions, 22(5), 24–31. Retrieved from http://doi.acm.org/10.1145/2804405
  • Borgia E. (2014). The internet of things vision: Key features, applications and open issues. Computer Communications, 54, 1–31. doi: 10.1016/j.comcom.2014.09.008
  • Braun V., & Clarke V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. doi: 10.1191/1478088706qp063oa
  • Brooke J. (1996). Sus–a quick and dirty usability scale. Usability evaluation in industry, 189(194), 4–7.
  • Brown, A. R., Keller, D., & de Lima, M. H. (2018). How ubiquitous technologies support ubiquitous music. In B.-L. Bartleet & L. Higgins (Eds.), The oxford handbook of community music (pp. 131–151). Oxford: Oxford University Press.
  • Bryan-Kinns N., & Hamilton F. (2012). Identifying mutual engagement. Behaviour & Information Technology, 31(2), 101–125. doi: 10.1080/01449290903377103
  • Burgoyne, J., Fujinaga, I., & Downie, J. (2016). Music information retrieval. In S. Schreibman, R. Siemens, & J. Unsworth (Eds.), A new companion to digital humanities (pp. 213–228). Hoboken, NJ: Wiley.
  • Cherry E., & Latulipe C. (2014). Quantifying the creativity support of digital tools through the creativity support index. ACM Transactions on Computer-Human Interaction, 21(4), 21. doi: 10.1145/2617588
  • Dannenberg R., & Hu N. (2003). Pattern discovery techniques for music audio. Journal of New Music Research, 32(2), 153–163. Retrieved from https://doi.org/10.1076/jnmr.32.2.153.16738
  • Fereday J., & Muir-Cochrane E. (2006). Demonstrating rigor using thematic analysis: a hybrid approach of inductive and deductive coding and theme development. International Journal of Qualitative Methods, 5(1), 80–92. doi: 10.1177/160940690600500107
  • Fiebrink, R., & Caramiaux, B. (2016). The machine learning algorithm as creative musical tool. In R. Dean & A. McLean (Eds.), Oxford handbook of algorithmic music. Oxford: Oxford University Press.
  • Font, F., Brookes, T., Fazekas, G., Guerber, M., LaBurthe, A., Plans, D., … Serra, X. (2016). Audio commons: bringing creative commons audio content to the creative industries. Audio engineering society conference: 61st international conference: Audio for games, London.
  • Font, F., Roma, G., & Serra, X. (2013). Freesound technical demo. Proceedings of the ACM international conference on multimedia, Barcelona (pp. 411–412).
  • Hödl, O., Fitzpatrick, G., & Kayali, F. (2017). Design implications for technology-mediated audience participation in live music. Proceedings of the sound and music computing conference, Espoo (pp. 28–34).
  • Jensenius A., & Lyons M (2017). A nime reader: Fifteen years of new interfaces for musical expression. Springer. Retrieved from https://doi.org/10.1007/978-3-319-47214-0
  • Keller, D., Gomes, C., & Aliel, L. (2018). The Handy Metaphor: Bimanual, touchless interaction for the Internet of Musical Things. Proceedings of the eight workshop on ubiquitous music, Sao Joao del Rei (pp. 180–188).
  • Keller D., & Lazzarini V. (2017). Ecologically grounded creative practices in ubiquitous music. Organised Sound, 22(1), 61–72. Retrieved from https://doi.org/10.1017/S1355771816000340
  • Keller, D., & Lazzarini, V. (2018). Theoretical approaches to musical creativity: The ubimus perspective. Musica Theorica, 2(1), 1–53.
  • Keller, D., Lazzarini, V., & Pimenta, M. (2014). Ubiquitous music. Cham: Springer.
  • Lazzarini V., Keller D., & Pimenta M. S. (2015). Prototyping of ubiquitous music ecosystems. Journal of Cases on Information Technology, 17(4), 73–85. doi: 10.4018/JCIT.2015100105
  • MacConnell, D., Trail, S., Tzanetakis, G., Driessen, P., Page, W., & Wellington, N. (2013). Reconfigurable autonomous novel guitar effects (RANGE). Proceedings of the international conference on sound and music computing, Stockholm.
  • Martinez-Avila, J., Greenhalgh, C., Hazzard, A., Benford, S., & Chamberlain, A. (2019). Encumbered interaction: A study of musicians preparing to perform. Proceedings of the conference on human factors in computing systems, Glasgow.
  • McPherson A. (2015). Buttons, handles, and keys: Advances in continuous-control keyboard instruments. Computer Music Journal, 39(2), 28–46. Retrieved from https://doi.org/10.1162/COMJ_a_00297
  • McPherson, A., Jack, R., & Moro, G. (2016). Action-sound latency: Are our tools fast enough? Proceedings of the conference on new interfaces for musical expression, Brisbane.
  • McPherson A., & Zappi V. (2015). An environment for Submillisecond-Latency audio and sensor processing on BeagleBone black. In Audio engineering society convention 138. Audio Engineering Society. Retrieved from http://www.aes.org/e-lib/browse.cfm?elib=17755
  • Miranda, E., & Wanderley, M. (2006). New digital musical instruments: control and interaction beyond the keyboard. Middleton: AR Editions Inc.
  • Mitchell, T., Madgwick, S., Rankine, S., Hilton, G., Freed, A., & Nix, A. (2014). Making the most of wi-fi: Optimisations for robust wireless live music performance. Proceedings of the conference on new interfaces for musical expression, London (pp. 251–256).
  • Müllensiefen D., Gingras B., Musil J., & Stewart L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLoS One, 9(2), e89642. doi: 10.1371/journal.pone.0089642
  • Overholt D., Berdahl E., & Hamilton R. (2011). Advancements in actuated musical instruments. Organised Sound, 16(02), 154–165. Retrieved from https://doi.org/10.1017/S1355771811000100
  • Pardue L., Harte C., & McPherson A. (2015). A low-cost real-time tracking system for violin. Journal of New Music Research, 44(4), 305–323. Retrieved from https://doi.org/10.1080/09298215.2015.1087575
  • Rossitto C., Rostami A., Tholander J., McMillan D., Barkhuus L., Fischione C., & Turchet L. (2018). Musicians’ initial encounters with a smart guitar. Proceedings of the 10th nordic conference on human-computer interaction (pp. 13–24). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/3240167.3240223
  • Rottondi C., Chafe C., Allocchio C., & Sarti A. (2016). An overview on networked music performance technologies. IEEE Access, 4, 8823–8843. Retrieved from https://doi.org/10.1109/ACCESS.2016.2628440
  • Rowland, C., Goodman, E., Charlier, M., Light, A., & Lui, A. (2015). Designing connected products: Ux for the consumer internet of things. Sebastopol: O'Reilly Media, Inc.
  • Satyanarayanan M. (2001). Pervasive computing: Vision and challenges. IEEE Personal Communications, 8(4), 10–17. doi: 10.1109/98.943998
  • Schiavoni, F., de Faria, P., & Manzolli, J. (2018). Addressing Creativity in Network Communication for Computer Music Interaction. Proceedings of the eight workshop on ubiquitous music, Sao Joao del Rei (pp. 144–156).
  • Slaney M. (2002). Semantic-audio retrieval. IEEE international conference on acoustics, speech, and signal processing (Vol. 4, pp. 4108–4111). Retrieved from https://doi.org/10.1109/ICASSP.2002.5745561
  • Stolfi, A., Ceriani, M., Turchet, L., & Barthet, M. (2018). Playsound.space: Inclusive free music improvisations using audio commons. Proceedings of the conference on new interfaces for musical expression, Blacksbourg (pp. 228–233).
  • Turchet L. (2018a). Smart Mandolin: Autobiographical design, implementation, use cases, and lessons learned. Proceedings of audio mostly conference (pp. 13:1–13:7). Retrieved from http://doi.acm.org/10.1145/3243274.3243280
  • Turchet L. (2018b). Some reflections on the relation between augmented and smart musical instruments. Proceedings of audio mostly conference (pp. 17:1–17:7). Retrieved from http://doi.acm.org/10.1145/3243274.3243281
  • Turchet L. (2019). Smart Musical Instruments: vision, design principles, and future directions. IEEE Access, 7, 8944–8963. Retrieved from https://doi.org/10.1109/ACCESS.2018.2876891
  • Turchet, L., & Barthet, M. (2018a). Jamming with a smart mandolin and Freesound-based accompaniment. IEEE conference of open innovations association (FRUCT), Bologna (pp. 375–381).
  • Turchet, L., & Barthet, M. (2018b). Ubiquitous musical activities with smart musical instruments. Proceedings of the eight workshop on ubiquitous music, Sao Joao del Rei.
  • Turchet L., & Barthet M. (2019). Co-design of Musical Haptic Wearables for electronic music performer's communication. IEEE Transactions on Human-Machine Systems, 49(2), 183–193. doi: 10.1109/THMS.2018.2885408
  • Turchet L., Benincaso M., & Fischione C. (2017). Examples of use cases with smart instruments. Proceedings of audio mostly conference (pp. 47:1–47:5). Retrieved from https://doi.org/10.1145/3123514.3123553
  • Turchet L., Fischione C., Essl G., Keller D., & Barthet M. (2018). Internet of musical things: Vision and challenges. IEEE Access, 6, 61994–62017. doi: 10.1109/ACCESS.2018.2872625
  • Turchet L., McPherson A., & Barthet M. (2018a). Co-design of a smart Cajón. Journal of the Audio Engineering Society, 66(4), 220–230. Retrieved from https://doi.org/10.17743/jaes.2018.0007
  • Turchet L., McPherson A., & Barthet M. (2018b). Real-time hit classification in a Smart Cajón. Frontiers in ICT, 5(16). Retrieved from https://doi.org/10.3389/fict.2018.00016
  • Weiser M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104. doi: 10.1038/scientificamerican0991-94
  • Wessel D., & Wright M. (2002). Problems and prospects for intimate musical control of computers. Computer Music Journal, 26(3), 11–22. Retrieved from https://doi.org/10.1162/014892602320582945
  • Wu Y., Zhang L., Bryan-Kinns N., & Barthet M. (2017). Open symphony: Creative participation for audiences of live music performances. IEEE MultiMedia, 24(1), 48–62. doi: 10.1109/MMUL.2017.19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.