1,976
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A model of large-scale thematic structure

Pages 220-241 | Received 17 Jul 2020, Accepted 30 Apr 2021, Published online: 05 Jul 2021

References

  • Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.101
  • Agres, K., Abdallah, S., & Pearce, M. (2018). Information-theoretic properties of auditory sequences dynamically influence expectation and memory. Cognitive Science, 42(1), 43–76. https://doi.org/10.1111/cogs.12477
  • Allanbrook, W. J. (1992). Two threads through the labyrinth: Topic and process in the first movement of K. 332 and K. 333. In W. J. Allanbrook, J. M. Levy, & W. P. Mahrt (Eds.), Convention in Eighteenth- and Nineteenth-Century Music Essays in Honor of Leonard G. Ratner (pp. 125–171). Pendragon Press.
  • Batt, R. (1987). Comments on “The effects of instrumentation, playing style, and structure in the ‘Goldberg Variation’ by Johann Sebastian Bach”. Music Perception: An Interdisciplinary Journal, 5(2), 207–213. https://doi.org/10.2307/40285393
  • Beach, D. (1994). The initial movements of Mozart's Piano Sonatas K. 280 and K. 332: Some striking similarities. Intégral, 8, 125–146.
  • Beghin, T. (2014). Recognizing musical topics versus executing rhetorical figures. In D. Mirka (Ed.), The Oxford Handbook of Topic Theory (pp. 551–576). Oxford University Press.
  • Cambouropoulos, E. (2008). Voice and stream: Perceptual and computational modeling of voice separation. Music Perception: An Interdisciplinary Journal, 26(1), 75–94. https://doi.org/10.1525/mp.2008.26.1.75
  • Caplin, W. E. (2001). Classical form: A theory of formal functions for the instrumental music of Haydn, Mozart, and Beethoven. Oxford University Press.
  • Cenkerová, Z., Hartmann, M., & Toiviainen, P. (2018). Crossing phrase boundaries in music. In A. Georgaki, & A. Andreopoulou (Eds.), SMC 2018: Proceedings of the 15th Sound and Music Computing Conference 2018 (pp. 66–71).
  • Cheung, V. K. M., Harrison, P. M. C., Meyer, L., Pearce, M. T., Haynes, J. -D., & Koelsch, S. (2019). Uncertainty and surprise jointly predict musical pleasure and Amygdala, Hippocampus, and Auditory Cortex activity. Current Biology, 29(23), 4084–4092. https://doi.org/10.1016/j.cub.2019.09.067
  • Cleary, J. G., & Teahan, W. J. (1997). Unbounded length contexts for PPM. The Computer Journal, 40(2/3), 67–75. https://doi.org/10.1093/comjnl/40.2_and_3.67
  • Conklin, D., & Witten, I. H. (1995). Multiple viewpoint systems for music prediction. Journal of New Music Research, 24(1), 51–73. https://doi.org/10.1080/09298219508570672
  • Cook, N. (1987). The perception of large-scale tonal closure. Music Perception: An Interdisciplinary Journal, 5(2), 197–205. https://doi.org/10.2307/40285392
  • Deliège, I. (2007). Similarity relations in listening to music: How do they come into play? Musicae Scientiae, 11(1 suppl), 9–37. https://doi.org/10.1177/1029864907011001021
  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38. https://doi.org/10.1111/rssb.1977.39.issue-1
  • Desain, P., Honing, H., Vanthienen, H., & Windsor, L. (1998). Computational modeling of music cognition: Problem or solution? Music Perception, 16(1), 151–166. https://doi.org/10.2307/40285783
  • Egermann, H., Pearce, M. T., Wiggins, G. A., & McAdams, S. (2013). Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music. Cognitive, Affective, & Behavioral Neuroscience, 13(3), 533–553. https://doi.org/10.3758/s13415-013-0161-y
  • Eitan, Z., & Granot, R. Y. (2008). Growing oranges on Mozart's apple tree: “Inner form” and aesthetic judgment. Music Perception: An Interdisciplinary Journal, 25(5), 397–418. https://doi.org/10.1525/mp.2008.25.5.397
  • Epstein, D. (1980). Beyond orpheus: Studies in musical structure. Journal of Aesthetics and Art Criticism, 38(4), 480–482. https://doi.org/10.2307/430342
  • Galand, J. (2014). Topics and tonal processes. In D. Mirka (Ed.), The Oxford Handbook of Topic Theory (pp. 453–473). Oxford University Press.
  • Galeazzi, F. (2012). The theoretical-practical elements of music, parts III and IV (D. & G. W. Harwood, Trans.). University of Illinois Press.(Original work published 1796).
  • Gingras, B., Pearce, M. T., Goodchild, M., Dean, R. T., Wiggins, G., & McAdams, S. (2016). Linking melodic expectation to expressive performance timing and perceived musical tension. Journal of Experimental Psychology: Human Perception and Performance, 42(4), 594–609. https://doi.org/10.1037/xhp0000141
  • Gjerdingen, R. (1999). An experimental music theory? In N. Cook, & M. Everist, (Eds.) Rethinking Music (pp. 161–170). Oxford University Press.
  • Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: A reward for learning? Journal of Neuroscience, 39(47), 9397–9409. https://doi.org/10.1523/JNEUROSCI.0428-19.2019
  • Gotlieb, H., & Konečni, V. J. (1985). The effects of instrumentation, playing style, and structure in the Goldberg Variations by Johann Sebastian Bach. Music Perception: An Interdisciplinary Journal, 3(1), 87–101. https://doi.org/10.2307/40285323
  • Granot, R. Y., & Jacoby, N. (2011). Musically puzzling I: Sensitivity to overall structure in the sonata form? Musicae Scientiae, 15(3), 365–386. https://doi.org/10.1177/1029864911409508
  • Granot, R. Y., & Jacoby, N. (2012). Musically puzzling II: Sensitivity to overall structure in a Haydn E-minor sonata. Musicae Scientiae, 16(1), 67–80. https://doi.org/10.1177/1029864911423146
  • Grout, D. J., Burkholder, J. P., & Palisca, C. V. (2010). A history of Western music (8th ed.). W. W. Norton.
  • Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory sequence processing. Frontiers in Psychology, 5, https://doi.org/10.3389/fpsyg.2014.01052Article 1052.
  • Hansen, N. C., Vuust, P., & Pearce, M. (2016). “If you have to ask, you'll never know”: Effects of specialised stylistic expertise on predictive processing of music. PloS One, 11(10), https://doi.org/10.1371/journal.pone.0163584Article e0163584.
  • Hatten, R. (2014). The troping of topics in Mozart's instrumental works. In D. Mirka (Ed.), The Oxford Handbook of Topic Theory (pp. 514–536). Oxford University Press.
  • Hepokoski, J., & Darcy, W. (2006). Elements of sonata theory: Norms, types, and deformations in the late-eighteenth-century sonata. Oxford University Press.
  • Hsu, J.-L., Liu, C.-C., & Chen, A. (2001). Discovering nontrivial repeating patterns in music data. IEEE Transactions on Multimedia, 3(3), 311–325. https://doi.org/10.1109/6046.944475
  • Irving, J. (2010). Understanding Mozart's piano sonatas. Routledge.
  • Janssen, B., de Haas, W. B., Volk, A., & van Kranenburg, P. (2014). Finding repeated patterns in music: State of knowledge, challenges, perspectives. In M. Aramaki, O. Derrien, R. Kronland-Martinet, & S. L. Ystad (Eds.), Sound, Music, and Motion, Lecture Notes in Computer Science (pp. 277–297). Springer International Publishing.
  • Karno, M., & Konečni, V. J. (1992). The effects of structural interventions in the first movement of Mozart's Symphony in G Minor K. 550 on aesthetic preference. Music Perception: An Interdisciplinary Journal, 10(1), 63–72. https://doi.org/10.2307/40285538
  • Karydis, I., Nanopoulos, A., & Manolopoulos, Y. (2007). Finding maximum-length repeating patterns in music databases. Multimedia Tools and Applications, 32(1), 49–71. https://doi.org/10.1007/s11042-006-0068-5
  • Kinderman, W. (2006). Mozart's piano music. Oxford University Press.
  • Konečni, V. J. (1984). Elusive effects of artists' ‘messages’. In W. R. Crozier, & A. J. Chapman (Eds.), Cognitive Processes in the Perception of Art (pp. 71–93). Elsevier.
  • Laaksonen, A., & Lemström, K. (2019). Transposition and time-warp invariant algorithm for detecting repeated patterns in polyphonic music. In 6th International Conference on Digital Libraries for Musicology (pp. 38–42), Association for Computing Machinery.
  • Lamont, A., & Dibben, N. (2001). Motivic structure and the perception of similarity. Music Perception: An Interdisciplinary Journal, 18(3), 245–274. https://doi.org/10.1525/mp.2001.18.3.245
  • Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. MIT Press.
  • Li, M., Chen, X., Li, X., Ma, B., & Vitányi, P. (2003). The similarity metric. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 863–872), Society for Industrial and Applied Mathematics.
  • Margulis, E. H. (2012). Musical repetition detection across multiple exposures. Music Perception: An Interdisciplinary Journal, 29(4), 377–385. https://doi.org/10.1525/mp.2012.29.4.377
  • Margulis, E. H. (2014). On repeat: How music plays the mind. Oxford University Press.
  • Meek, C., & Birmingham, W. P. (2001). Thematic extractor. In J. S. Downie & D. Bainbridge (Eds.), Proceedings of the 2nd Annual International Symposium on Music Information Retrieval (pp. 119–128).
  • Melkonian, O., Ren, I. Y., Swierstra, W., & Volk, A. (2019). What constitutes a musical pattern? In Proceedings of the 7th ACM SIGPLAN International Workshop on Functional Art, Music, Modeling, and Design (pp. 95–105), Association for Computing Machinery.
  • Meyer, L. B. (1989). Style and music: Theory, history, and ideology. University of Chicago Press.
  • Omigie, D., Pearce, M. T., & Stewart, L. (2012). Tracking of pitch probabilities in congenital amusia. Neuropsychologia, 50(7), 1483–1493. https://doi.org/10.1016/j.neuropsychologia.2012.02.034
  • Omigie, D., Pearce, M. T., Williamson, V. J., & Stewart, L. (2013). Electrophysiological correlates of melodic processing in congenital amusia. Neuropsychologia, 51(9), 1749–1762. https://doi.org/10.1016/j.neuropsychologia.2013.05.010
  • Pearce, M. T. (2005). The construction and evaluation of statistical models of melodic structure in music perception and composition [Doctoral dissertation, City University London]. City Research Online. https://openaccess.city.ac.uk/id/eprint/8459/.
  • Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: Mechanisms of stylistic enculturation. Annals of the New York Academy of Sciences, 1423(1), 378–395. https://doi.org/10.1111/nyas.2018.1423.issue-1
  • Pearce, M. T., & Müllensiefen, D. (2017). Compression-based modelling of musical similarity perception. Journal of New Music Research, 46(2), 135–155. https://doi.org/10.1080/09298215.2017.1305419
  • Pearce, M. T., Müllensiefen, D., & Wiggins, G. A. (2010). The role of expectation and probabilistic learning in auditory boundary perception: A model comparison. Perception, 39(10), 1367–1391. https://doi.org/10.1068/p6507
  • Pearce, M. T., Ruiz, M. H., Kapasi, S., Wiggins, G. A., & Bhattacharya, J. (2010). Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation. NeuroImage, 50(1), 302–313. https://doi.org/10.1016/j.neuroimage.2009.12.019
  • Potter, C. (2003). Debussy and nature. In S. Trezise (Ed.), The Cambridge Companion to Debussy (pp. 137–152). Cambridge University Press.
  • Ren, I. Y., Koops, H. V., Volk, A., & Swierstra, W. (2017). In search of the consensus among musical pattern discovery algorithms. In Proceedings of the 18th International Society for Music Information Retrieval Conference (pp. 671–678). ISMIR Press.
  • Reynolds, D. (2009). Gaussian mixture models. In S. Z. Li, & A. Jain (Eds.), Encyclopedia of Biometrics, (pp. 659–663). Springer.
  • Rolison, J. J., & Edworthy, J. (2012). The role of formal structure in liking for popular music. Music Perception: An Interdisciplinary Journal, 29(3), 269–284. https://doi.org/10.1525/mp.2012.29.3.269
  • Rumph, S. (2014). Topical figurae: The double articulation of topics. In D. Mirka (Ed.), The Oxford Handbook of Topic Theory (pp. 493–513). Oxford University Press.
  • Sauvé, S. A. (2018). Prediction in polyphony: modelling musical auditory scene analysis [Doctoral dissertation, Queen Mary University of London]. Queen Mary Research Online. https://qmro.qmul.ac.uk/xmlui/handle/123456789/46805.
  • Sauvé, S. A., Sayed, A., Dean, R. T., & Pearce, M. T. (2018). Effects of pitch and timing expectancy on musical emotion. Psychomusicology: Music, Mind, and Brain, 28(1), 17–39. https://doi.org/10.1037/pmu0000203
  • Schenker, H. (1994). The masterwork in music: Volume 1, 1925 (W. Drabkin, Ed.; I. Bent, W. Drabkin, R. Kramer, J. Rothgeb, H. Siegal, Trans.). Cambridge University Press. (Original work published 1925).
  • Sleator, D., & Temperley, D. (2003). The Melisma Music Analyzer [Computer software]. http://www.link.cs.cmu.edu/music-analysis/.
  • Tan, S.-L., & Spackman, M. P. (2005). Listeners' judgments of the musical unity of structurally altered and intact musical compositions. Psychology of Music, 33(2), 133–153. https://doi.org/10.1177/0305735605050648
  • Temperley, D. (2001). The cognition of basic musical structures. MIT Press.
  • Tharwat, A (2018). Independent component analysis: An introduction. Applied Computing and Informatics, 17(2), 222–249. https://doi.org/10.1016/j.aci.2018.08.006
  • Tillmann, B., & Bigand, E. (1996). Does formal musical structure affect perception of musical expressiveness? Psychology of Music, 24(1), 3–17. https://doi.org/10.1177/0305735696241002
  • Uitdenbogerd, A., & Zobel, J. (1999). Melodic matching techniques for large music databases. In Proceedings of the 7th ACM International Conference on Multimedia (Part 1) (pp. 57–66). Association for Computing Machinery.
  • Uitdenbogerd, A. L., & Zobel, J. (1998). Manipulation of music for melody matching. In Proceedings of the 6th ACM International Conference on Multimedia (pp. 235–240), Association for Computing Machinery.
  • van der Weij, B., Pearce, M. T., & Honing, H. (2017). A probabilistic model of meter perception: Simulating enculturation. Frontiers in Psychology, 8, https://doi.org/10.3389/fpsyg.2017.00824Article 824.
  • Wang, C., Li, J., & Shi, S. (2006). N-gram inverted index structures on music data for theme mining and content-based information retrieval. Pattern Recognition Letters, 27(5), 492–503. https://doi.org/10.1016/j.patrec.2005.09.012
  • Whittall, A. (2001). Form. In Grove Music Online (pp. 493–513). Oxford University Press. https://doi.org/10.1093/gmo/9781561592630.article.09981
  • Ziv, N., & Eitan, Z. (2007). Themes as prototypes: Similarity judgments and categorization tasks in musical contexts. Musicae Scientiae, 11(1 suppl), 99–133. https://doi.org/10.1177/1029864907011001051