123
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The modal behaviour of a violin corpus

&
Pages 139-160 | Received 20 Oct 2022, Accepted 16 Feb 2024, Published online: 28 Feb 2024

References

  • Akar, Ö, & Willner, K. (2020). Investigation of the Helmholtz motion of a violin string: A finite element approach. Journal of Vibration and Acoustics, 142(5), 051112. https://doi.org/10.1115/1.4047417
  • Akar, Ö, & Willner, K. (2022). Investigating the modal behavior of a violin top and a back plate. In B. J. Dilworth, T. Marinone, & M. Mains (Eds.), Proceedings of the 40th IMAC, A conference and exposition on structural dynamics 2022, topics in modal analysis & parameter identification (Vol. 8, p. 179). Springer.
  • Bissinger, G. (2001). Modern vibration measurement techniques for bowed string instruments. Experimental Techniques, 25(4), 43–46. https://doi.org/10.1111/j.1747-1567.2001.tb00032.x
  • Bissinger, G. (2003). Modal analysis of a violin octet. The Journal of the Acoustical Society of America, 113(4), 2105–2113. https://doi.org/10.1121/1.1555614
  • Bissinger, G. (2006). The violin bridge as filter. The Journal of the Acoustical Society of America, 120(1), 482–491. https://doi.org/10.1121/1.2207576
  • Bissinger, G. (2008). Structural acoustics of good and bad violins. The Journal of the Acoustical Society of America, 124(3), 1764–1773. https://doi.org/10.1121/1.2956478
  • Bissinger, G., & Keiffer, J. (2003). Radiation damping, efficiency, and directivity for violin normal modes below 4 kHz. Acoustics Research Letters Online, 4(1), 7–12. https://doi.org/10.1121/1.1524623
  • Brauchler, A., Ziegler, P., & Eberhard, P. (2021). An entirely reverse-engineered finite element model of a classical guitar in comparison with experimental data. The Journal of the Acoustical Society of America, 149(6), 4450–4462. https://doi.org/10.1121/10.0005310
  • Bretos, J., Santamaria, C., & Moral, J. A. (1999). Vibrational patterns and frequency responses of the free plates and box of a violin obtained by finite element analysis. The Journal of the Acoustical Society of America, 105(3), 1942–1950. https://doi.org/10.1121/1.426729
  • Cremer, L. (1984). The physics of the violin. The MIT Press.
  • Dahl, K. B. (2009). Mechanical properties of clear wood from Norway spruce [Doctoral dissertation]. Norwegian University of Science and Technology. Doctoral theses at NTNU, 2009:250. https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/236422.
  • D’Errico, J. (2021). Fminsearchbnd, fminsearchcon. In MATLAB central file exchange. https://de.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon
  • Dinulică, F., Savin, A., & Stanciu, M. D. (2023). Physical and acoustical properties of wavy grain sycamore maple (Acer pseudoplatanus L.) used for musical instruments. Forests, 14(2), 197. https://doi.org/10.3390/f14020197
  • Ewins, D. J. (2000). Modal testing: Theory, practice and application (2nd ed.). Research Studies Press Ltd.
  • Garland, M., & Heckbert, P. S. (1997). Surface simplification using quadric error metrics. Proceedings of the 24th annual conference on computer graphics and interactive techniques - SIGGRAPH ‘97, April (pp. 209–216). https://doi.org/10.1145/258734.258849
  • Gasch, R., Knothe, K., & Liebich, R. (2012). Strukturdynamik (2nd ed.). Springer. https://doi.org/10.1007/978-3-540-88977-9
  • Gonzalez, S., Salvi, D., Antonacci, F., & Sarti, A. (2021a). Eigenfrequency optimisation of free violin plates. The Journal of the Acoustical Society of America, 149(3), 1400–1410. https://doi.org/10.1121/10.0003599
  • Gonzalez, S., Salvi, D., Baeza, D., Antonacci, F., & Sarti, A. (2021b). A data-driven approach to violin making. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-020-79139-8
  • Gough, C. E. (2015a). Violin plate modes. The Journal of the Acoustical Society of America, 137(1), 139–153. https://doi.org/10.1121/1.4904544
  • Gough, C. E. (2015b). A violin shell model: Vibrational modes and acoustics. The Journal of the Acoustical Society of America, 137(3), 1210–1225. https://doi.org/10.1121/1.4913458
  • Gough, C. E. (2016). Violin acoustics – overview. Acoustics Today, 12, 22.
  • Haupt, P. (2002). Continuum mechanics and theory of materials. Springer.
  • Helmholtz, H. v. (1863). Von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Vieweg.
  • Hutchins, C. M. (1962). The physics of violins. Scientific American, 207(5), 78–93.
  • Hutchins, C. M. (1981). The acoustics of violin plates. Scientific American, 245(4), 170–186. https://doi.org/10.1038/scientificamerican1081-170
  • Keunecke, D., Hering, S., & Niemz, P. (2008). Three-dimensional elastic behaviour of common yew and Norway spruce. Wood Science and Technology, 42(8), 633–647. https://doi.org/10.1007/s00226-008-0192-7
  • Knott, G. A., Shin, Y. S., & Chargin, M. (1989). A modal analysis of the violin. Finite Elements in Analysis and Design, 5(3), 269–279. https://doi.org/10.1016/0168-874X(89)90049-8
  • Kollmann, F. F. P. (1951). Technologie des Holzes und der Werkstoffe. Springer. https://doi.org/10.1007/978-3-642-49758-2
  • Lämmlein, S. L., Künniger, T., Rüggeberg, M., Schwarze, F. W. M. R., Mannes, D., & Burgert, I. (2021). Frequency dependent mechanical properties of violin varnishes and their impact on vibro-mechanical tonewood properties. Results in Materials, 9(2020), 100137. https://doi.org/10.1016/j.rinma.2020.100137
  • Lu, Y. (2013). Comparison of finite element method and modal analysis of violin top plate [Master's thesis]. Mcgill University, Canada McGill University. https://escholarship.mcgill.ca/concern/theses/rv042×42g
  • Maia, N. M. M., & Montalvao e Silva, J. M. (1997). Theoretical and experimental modal analysis. Research Studies Press.
  • Malvermi, R., Gonzalez, S., Antonacci, F., Sarti, A., & Corradi, R. (2022). A statistical approach to violin evaluation. Applied Sciences, 12(14), 7313. https://doi.org/10.3390/app12147313
  • Marshall, K. D. (1985). Modal analysis of a violin. The Journal of the Acoustical Society of America, 77(2), 695–709. https://doi.org/10.1121/1.392338
  • Meinel, H. (1957). Regarding the sound quality of violins and a scientific basis for violin construction. The Journal of the Acoustical Society of America, 29(7), 817–822. https://doi.org/10.1121/1.1909064
  • Molin, N.-E., Lindgren, L., & Jansson, E. V. (1988). Parameters of violin plates and their influence on the plate modes. The Journal of the Acoustical Society of America, 83(1), 281–291. https://doi.org/10.1121/1.396430
  • Moral, J. A., & Jansson, E. V. (1982). Input admittance, eigenmodes, and quality of violins. Report STL-QPSR, 23(2–3), 60–75. http://www.speech.kth.se/prod/publications/files/qpsr/1982/1982_23_2-3_060-075.pdf
  • Pyrkosz, M. A. (2013). Reverse engineering the structural and acoustic behaviour of a Stradivari violin [Doctoral dissertation]. Michigan Technological University. Dissertations, Master's Theses and Master's Reports. http://digitalcommons.mtu.edu/etds/634
  • Raman, C. V. (1918). On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family, with experimental verification of the results-Part I. Bulletin of the Indian Association for the Cultivation of Science, 15, 1–158.
  • Ross, R. J. (ed.). (2010). Wood handbook: Wood as an engineering material (centennial). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Saldner, H. O., Molin, N.-E., & Jansson, E. V. (1996). Vibration modes of the violin forced via the bridge and action of the soundpost. The Journal of the Acoustical Society of America, 100(2), 1168–1177. https://doi.org/10.1121/1.416301
  • Salvi, D., Gonzalez, S., Antonacci, F., & Sarti, A. (2021). Parametric optimization of violin top plates using machine learning. In E. Carletti (Ed.), Advances in acoustics, noise and vibration - 2021, Proceedings of the 27th International congress on sound and vibration, ICSV 2021. Silesian University Press.
  • Skrodzka, E. B., Krupa, A., Rosenfeld, E., & Linde, B. B. J. (2009). Mechanical and optical investigation of dynamic behavior of violins at modal frequencies. Applied Optics, 48(7), C165. https://doi.org/10.1364/AO.48.00C165
  • Skrodzka, E. B., Linde, B. B. J., & Krupa, A. (2013). Modal parameters of two violins with different varnish layers and subjective evaluation of their sound quality. Archives of Acoustics, 38(1), 75–81. https://doi.org/10.2478/aoa-2013-0009
  • Sonderegger, W., Martienssen, A., Nitsche, C., Ozyhar, T., Kaliske, M., & Niemz, P. (2013). Investigations on the physical and mechanical behaviour of sycamore maple (Acer pseudoplatanus L.). European Journal of Wood and Wood Products, 71(1), 91–99. https://doi.org/10.1007/s00107-012-0641-8
  • Stanciu, M. D., Coşereanu, C., Dinulică, F., & Bucur, V. (2020). Effect of wood species on vibration modes of violins plates. European Journal of Wood and Wood Products, 78(4), 785–799. https://doi.org/10.1007/s00107-020-01538-5
  • Torres, J. A., Soto, C. A., & Torres-Torres, D. (2020). Exploring design variations of the Titian Stradivari violin using a finite element model. The Journal of the Acoustical Society of America, 148(3), 1496–1506. https://doi.org/10.1121/10.0001952
  • Tunlid, E., & Värelä, J. (2020). Experimental characterization and computational dynamic modelling of a violin [Master's thesis]. Lund University. Division of Structural Mechanics, Faculty of Engineering LTH, Lund University, Sweden. https://lup.lub.lu.se/student-papers/search/publication/9024959
  • Viala, R. (2018). Towards a model-based decision support tool for stringed musical instrument making [Doctoral dissertation]. Université Bourgogne Franche-Comté. Ecole doctorale n°37 SPIM, Sciences Pour l'Ingénieur et Microtechniques. https://theses.hal.science/tel-02918127
  • Viala, R., Placet, V., & Cogan, S. (2020). Simultaneous non-destructive identification of multiple elastic and damping properties of spruce tonewood to improve grading. Journal of Cultural Heritage, 42, 108–116. https://doi.org/10.1016/j.culher.2019.09.004
  • Wagenführ, R., & Wagenführ, A. (2022). Holzatlas. Carl Hanser Verlag.
  • Woodhouse, J. (2014). The acoustics of the violin: A review. Reports on Progress in Physics, 77(11), 115901. https://doi.org/10.1088/0034-4885/77/11/115901
  • Yokoyama, M. (2021). Coupled numerical simulations of the structure and acoustics of a violin body. The Journal of the Acoustical Society of America, 150(3), 2058–2064. https://doi.org/10.1121/10.0006387

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.