510
Views
6
CrossRef citations to date
0
Altmetric
Cold Atoms and Molecules

Velocity selection in a Doppler-broadened ensemble of atoms interacting with a monochromatic laser beam

ORCID Icon
Pages 640-647 | Received 22 Feb 2017, Accepted 06 May 2017, Published online: 22 May 2017

References

  • Corney, A. Atomic and Laser Spectroscopy; Oxford University Press, Oxford, 1980.
  • Letokhov, V. Laser Control of Atoms and Molecules; Oxford University Press, Oxford, 2007.
  • Foot, C.J. Atomic Physics; Oxford University Press, Oxford, 2005.
  • Nagourney, W. Quantum Electronics for Atomic Physics and Telecommunications; Oxford University Press, Oxford, 2014.
  • Scoles, G. Atomic and Molecular Beam Methods. Vol. 1. Oxford University Press, Oxford, 1998.
  • Haroche, S.; Raimond, J.-M. Exploring the Quantum; Oxford University Press, Oxford, 2006.
  • Brune, M.; Hagley, E.; Dreyer, J.; Maitre, X.; Maali, A.; Wunderlich, C.; Raimond, J.M.; Haroche, S. Observing the progressive decoherence of the ‘meter’ in a quantum measurement. Phys. Rev. Lett. 1996, 77, 4887–4890.
  • Hagley, E.; Maitre, X.; Nogues, G.; Wunderlich, C.; Brune, M.; Raimond, J.M.; Haroche, S. Generation of Einstein-Podolsky-Rosen pairs of atoms Phys. Rev. Lett. 1997, 79, 1–5.
  • Maitre, X.; Hagley, E.; Nogues, G.; Wunderlich, C. Goy, P,; Brune, M.; Raimond, J. M.; Haroche, S. Quantum memory with a single photon in a cavity. Phys. Rev. Lett. 1997, 79, 769–772.
  • Nogues, G.; Rauschenbeutel, A.; Osnaghi, S.; Brune, M.; Raimond, J.M.; Haroche, S. Seeing a single photon without destroying it. Nature 1999, 400, 239–242.
  • Wieman, C.; Hansch, T.W. Doppler-free Laser Polarization Spectroscopy. Phys. Rev. Lett. 1976, 36, 1170–1173.
  • Nakayama, S. Theoretical Analysis of Rb and Cs D2 Lines in Doppler-free Spectroscopic Techniques with Optical Pumping. Jpn. J. Appl. Phys. Part 1985, 1 (24), 1–7.
  • Pearman, C.P.; Adams, C.S.; Cox, S.G.; Griffin, P.F.; Smith, D.A.; Hughes, I.G. Polarization Spectroscopy of a Closed Atomic Transition: Applications to Laser Frequency Locking. J. Phys. B: Atom. Mol. Opt. Phys. 2002, 35, 5141–5151.
  • Harris, M.L.; Adams, C.S.; Cornish, S.L.; McLeod, I.C.; Tarleton, E.; Hughes, I.G. Polarization Spectroscopy in Rubidium and Cesium Phys. Rev. A 2006, 73, 062509.
  • Do, H.D.; Moon, G.; Noh, H.R. Polarization Spectroscopy of Rubidium Atoms: Theory and Experiment Phys. Rev. A 2008, 77, 032513.
  • Yu, H.; Kim, S.J.; Kim, J.B. Velocity Selective Polarization Spectroscopy for Modulation-Free Dispersion Signals at Detuned Frequencies. J. Spectrosc. 2014, 2014, 541063.
  • Kirkbride, J.; Dalton, A.R.; Ritchie, G.A.D. Polarization Spectroscopy of a Velocity-selected Molecular Sample Opt. Lett. 2014, 39, 2645–2648.
  • Choi, G.W.; Noh, H.R. On the Doppler Averaging of Susceptibility in Pump-probe Laser Spectroscopy Opt. Rev. 2015, 22, 521–525.
  • Knappe, S.; Shah, V.; Schwindt, P.D.D.; Hollberg, L.; Kitching, J.; Liew, L.; Moreland, J. A Microfabricated Atomic Clock Appl. Phys. Lett. 2004, 85, 1460.
  • Budker, D.; Romalis, M. Optical Magnetometry. Nat. Phys. 2007, 3, 227–234.
  • Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Shaffer, J.P. Atom-Based Vector Microwave Electrometry Using Rubidium Rydberg Atoms in a Vapor Cell. Phys. Rev. Lett. 2013, 111, 063001.
  • Bohi, P.; Treutlein, P. Simple Microwave Field Imaging Technique using hot Atomic Vapor Cells Appl. Phys. Lett. 2012, 101, 81107.
  • Horsley, A.; Du, G.X.; Pellaton, M.; Affolderbach, C.; Mileti, G.; Treutlein, P. Imaging of Relaxation Times and Microwave Field Strength in a Microfabricated Vapor Cell. Phys. Rev. A. 2013, 88, 063407.
  • Walker, G.; Arnold, A. S,; Franke-Arnold, S. Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor. Phys. Rev. Lett. 2012, 108, 243601.
  • Julsgaard, B.; Sherson, J.; Cirac, J.I. Fiurás̆ek, J.; Polzik, E. S. Experimental Demonstration of Quantum Memory for Light. Nature 2004, 432, 482–486.
  • Vliegen, E.; Kadlecek, S.; Anderson, L.W.; Walker, T.G.; Erickson, C.J.; Happer, W. Faraday Rotation Density Measurements of Optically Thick Alkali Metal Vapors Nucl. Instrum. Method Phys. Res. Sec. A 2001, 460, 444–450.
  • Safari, A.; De Leon, I.; Mirhosseini, M.; Magaña-Loaiza, O.S.; Boyd, R.W. Light-Drag Enhancement by a Highly Dispersive Rubidium Vapor Phys. Rev. Lett. 2016, 116, 01360.
  • Demtröder, W. Laser Spectroscopy Basic Concepts and Instrumentation; Springer, Berlin, 1996.
  • Weller, L.; Bettles, R.J.; Siddons, P.; Adams, C.S.; Hughes, I.G. Absolute Absorption on the Rubidium D1 Line Including Resonant Dipole-dipole Interactions. J. Phys. B: Atom. Mol. Opt. Phys. 2011, 44, 195006.
  • Loudon, R. The Quantum Theory of Light; Oxford University Press, Oxford, 2000.
  • Ramsey, N.F. Molecular Beams; Oxford University Press, Oxford, 1956.
  • Thorne, A.P. Spectrophysics; Chapman and Hall, London, 1988.
  • Hughes, I.G.; Hase, T.P.A. Measurements And Their Uncertainties: A practical Guide to Modern Error Analysis; Oxford University Press, Oxford, 2010.
  • Zentile, M.A.; Keaveney, J.; Weller, L.; Whiting, D.J.; Adams, C.S.; Hughes, I.G. ElecSus: A Program to Calculate the Electric Susceptibility of an Atomic Ensemble Comput. Phys. Commun. 2015, 189, 162–174.
  • Siddons, P.; Adams, C.S.; Hughes, I.G. Off-resonance Absorption and Dispersion in Vapours of Hot Alkali-metal Atoms. J. Phys. B: Atom. Mol. Opt. Phys. 2009, 42, 175004.
  • Kemp, S.L.; Hughes, I.G.; Cornish, S.L. An Analytical Model of Off-resonant Faraday Rotation in Hot Alkali Metal Vapours. J. Phys. B: Atom. Mol. Opt. Phys. 2011, 44, 235004.
  • Siddons, P.; Bell, N.C.; Cai, Y.; Adams, C.S.; Hughes, I.G. A Gigahertz-bandwidth Atomic Probe Based on the Slow-light Faraday Effect. Nat. Photon. 2009, 3, 225–229.
  • Weller, L.; Kleinbach, K.S.; Zentile, M.A.; Knappe, S.; Hughes, I.G.; Adams, C.S. Optical Isolator using an Atomic Vapor in the Hyperfine Paschen-Back Regime Opt. Lett. 2012, 37, 3405–3407.
  • Yeh, P. Dispersive Magnetooptic Filters. Appl. Opt. 1982, 21, 2069–2075.
  • Zentile, M.A.; Whiting, D.J.; Keaveney, J.; Adams, C.S.; Hughes, I.G. Atomic Faraday Filter with Equivalent Noise Bandwidth Less than 1 GHz Opt. Lett. 2015, 40, 2000–2003.
  • Zentile, M.A.; Keaveney, J.; Mathew, R.S.; Whiting, D.J.; Adams, C.S.; Hughes, I.G. Optimization of Atomic Faraday Filters in the Presence of Homogeneous line Broadening. J. Phys. B: Atom. Mol. Opt. Phys. 2015, 48, 185001.
  • Rotondaro, M.D.; Zhdanov, B.V.; Knize, R.J. Generalized Treatment of Magneto-optical Transmission Filters. J. Opt. Soc. Am. B 2015, 32, 2507–2513.
  • Abel, R.P.; Krohn, U.; Siddons, P.; Hughes, I.G.; Adams, C.S. Faraday Dichroic Beam Splitter for Raman Light using an Isotopically Pure Alkali-metal-vapor Cell Opt. Lett. 2009, 34, 3071–3073.
  • Hombo, N.; Taniguchi, S.; Sugimura, S.; Fujita, K.; Mitsunaga, M. Electromagnetically Induced Polarization Rotation in Na Vapor. J. Opt. Soc. Am. B 2012, 29, 1717–1721.
  • Kaczmarek, K.T.; Saunders, D.J.; Sprague, M.R.; Kolthammer, W.S.; Feizpour, A.; Ledingham, P.M.; Brecht, B.; Poem, E.; Walmsley, I.A.; Nunn, J. Ultrahigh and Persistent Optical Depths of Cesium in Kagomé-type Hollow-core Photonic Crystal Fibers Opt. Lett. 2015, 40, 5582–5585.
  • Munns, J.H.D.; Qiu, C.; Ledingham, P.M.; Walmsley, I.A.; Nunn, J.; Saunders, D.J. In situ Characterization of an Optically Thick Atom-filled Cavity Phys. Rev. A 2016, 93, 013858.
  • Heshami, K.; England, D.G.; Humphreys, P.C.; Bustard, P.J.; Acosta, V.M.; Nunn, J.; Sussman, B.J. Quantum Memories: Emerging Applications and Recent Advances. J. Mod. Opt. 2016, 63, 2005–2028.
  • Siddons, P.; Adams, C.S.; Ge, C.; Hughes, I.G. Absolute Absorption on Rubidium D Lines: Comparison Between Theory and Experiment. J. Phys. B: Atom. Mol. Opt. Phys. 2008, 41, 155004.
  • Shin, S.R.; Noh, H.R. Doppler Spectroscopy of Arbitrarily Polarized Light in Rubidium Opt. Commun. 2011, 284, 1243–1246.
  • Smith, D.A.; Hughes, I.G. The Role of Hyperfine Pumping in Multilevel Systems Exhibiting Saturated Absorption Am. J. Phys. 2004, 72, 631–637.
  • Himsworth, M.; Freegarde, T. Rubidium Pump-probe Spectroscopy: Comparison Between ab Initio Theory and Experiment Phys. Rev. A 2010, 81, 023423.
  • Noh, H.R.; Moon, G.; Jhe, W. Discrimination of the Effects of Saturation and Optical Pumping in Velocity-dependent Pump-probe Spectroscopy of Rubidium: A Simple Analytical Study Phys. Rev. A 2010, 82, 062517.
  • Sherlock, B.E.; Hughes, I.G. How Weak is a Weak Probe in Laser Spectroscopy? Am. J. Phys. 2009, 77, 111–115.
  • Jones, D.E.; Franson, D.E.; Pittman, T.B. Saturation of Atomic Transitions using Subwavelength Diameter Tapered Optical Fibers in Rubidium Vapor. J. Opt. Soc. Am. B 2014, 31, 1997–2001.
  • Hickman, G.T.; Pittman, T.B.; Franson, J.D. Saturated Absorption at Nanowatt Power Levels using Metastable Xenon in a High-finesse Optical Cavity Opt. Express 2014, 22, 22882–22887.
  • Marangos, J.P. Topical Review Electromagnetically Induced Transparency. J. Mod. Opt. 1998, 45, 471–503.
  • Gea-Banacloche, J.; Li, Y.-Q.; Jin, S.-Z.; Xiao, M. Electromagnetically Induced Transparency in Ladder-type Inhomogeneously Broadened Media: Theory and Experiment Phys. Rev. A 1995, 51, 576–584.
  • Whiting, D.J.; Bimbard, E.; Keaveney, J.; Zentile, M.A.; Adams, C.S.; Hughes, I.G. Electromagnetically Induced Absorption in a Nondegenerate Three-level Ladder System Opt. Lett. 2015, 40, 4289–4292.
  • Whiting, D.J.; Keaveney, J.; Adams, C.S.; Hughes, I.G. Direct Measurement of Excited-state Dipole Matrix Elements using Electromagnetically Induced Transparency in the Hyperfine Paschen-Back Regime Phys. Rev. A 2016, 93, 043854.
  • de Echaniz, S.R.; Greentree, A.D.; Durrant, A.V.; Segal, D.M.; Marangos, J.P.; Vaccaro, J.A. Observations of a Doubly Driven V System Probed to a Fourth Level in Laser-cooled Rubidium Phys. Rev. A 2001, 64, 013812.
  • Greentree, A.D.; Smith, T.B.; de Echaniz, S.R.; Durrant, A.V.; Marangos, J.P.; Segal, D.M.; Vaccaro, J.A. Resonant and Off-resonant Transients in Electromagnetically Induced Transparency: Turn-on and Turn-off Dynamics Phys. Rev. A 2002, 65, 053802.
  • Scherman, M.; Mishina, O.S.; Lombardi, P.; Giacobino, E.; Laurat, J. Enhancing Electromagnetically-induced Transparency in a Multilevel Broadened Medium Opt. Express 2012, 20, 4346–4351.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.