223
Views
22
CrossRef citations to date
0
Altmetric
Articles

Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure

, &
Pages 2221-2227 | Received 09 Mar 2017, Accepted 24 Jun 2017, Published online: 12 Jul 2017

References

  • Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 2006, 311, 189–193.10.1126/science.1114849
  • Maier, S.A. Plasmonics: The Promise of Highly Integrated Optical Devices. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1671–1677.10.1109/JSTQE.2006.884086
  • McPolin, C.P.T.; Bouillard, J.-S.; Vilain, S.; Krasavin, A.V.; Dickson, W.; O’Connor, D.; Wurtz, G.A.; Justice, J.; Corbett, B.; Zayats, A.V. Integrated Plasmonic Circuitry on a Vertical-Cavity Surface-Emitting Semiconductor Laser Platform. Nat. Commun. 2016, 7.
  • Johns, P.; Yu, K.; Devadas, M.S.; Hartland, G.V. Role of Resonances in the Transmission of Surface Plasmon Polaritons between Nanostructures. ACS Nano 2016, 10, 3375–3381.10.1021/acsnano.5b07185
  • Zhang, T.; Su, D.; Li, R.-Z.; Wang, S.-J.; Shan, F.; Xu, J.-J.; Zhang, X.-Y. Plasmonic Nanostructures for Electronic Designs of Photovoltaic Devices: Plasmonic Hot-carrier Photovoltaic Architectures and Plasmonic Electrode Structures. J. Photonics for Energy 2016, 6, 042504.10.1117/1.JPE.6.042504
  • Sobolewska, E.K.; Leißner, T.; Jozefowski, L.; Brewer, J.; Rubahn, H.-G.; Adam, J.; Fiutowski, J.Surface Plasmons Excited by the Photoluminescence of Organic Nanofibers in Hybrid Plasmonic Systems, Proceeding of SPIE 9884, Nanophotonics VI , 98843D, April 21, 2016.
  • Liu, B.; Lu, Y.; Yang, X.; Yao, J. Surface Plasmon Resonance Sensor Based on Photonic Crystal Fiber Filled with Core-shell Ag–Au Nanocomposite Materials. Opt. Eng. 2016, 55, 117104.10.1117/1.OE.55.11.117104
  • Allen, K.W.; Farahi, N.; Li, Y.; Limberopoulos, N.I.; Walker, D.E.; Urbas, A.M.; Astratov, V.N. Overcoming the Diffraction Limit of Imaging Nanoplasmonic Arrays by Microspheres and Microfibers. Opt. Express 2015, 23, 24484–24496.10.1364/OE.23.024484
  • Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the Diffraction Limit. Nat Photonics 2010, 4, 83–91.
  • Wang, Y.; Wang, T.; Han, X.; Zhu, Y.; Wang, B. Plasmon-induced Transparency Effect in Metal–Insulator–Metal Waveguide Coupled with Multiple Dark and Bright Nanocavities. Opt. Eng. 2016, 55, 027108.10.1117/1.OE.55.2.027108
  • Lei, J.; Ji, B.; Lin, J. High-performance Tunable Plasmonic Absorber Based on the Metal–Insulator–Metal Grating Nanostructure. Plasmonics 2016, 1 , 151–156.
  • Zhu, B.Q.; Tsang, H.K. High Coupling Efficiency Silicon Waveguide to Metal–Insulator–Metal Waveguide Mode Converter. Journal of Lightwave Technology 2016, 34, 2467–2472.10.1109/JLT.2016.2535490
  • Zou, F.; Zou, X.; Pan, W.; Luo, B.; Yan, L. Multiple-channel Plasmonic Filter Based on Metal–Insulator–Metal Waveguide and Fractal Theory. Plasmonics 2016, 1–6. DOI: 10.1007/s11468-016-0422-z.
  • Jung, Y.J.; Park, N. Independent Color Filtering of Differently Polarized Light Using Metal–Insulator–Metal Type Guided Mode Resonance Structure. J. Opt. Soc. Korea 2016, 20, 180–187.10.3807/JOSK.2016.20.1.180
  • Banerjee, S. In Design and Simulation of Metal–Insulator–Metal Nanoresonators for Color Filter Applications, Proceeding of SPIE 9181, Light Manipulating Organic Materials and Devices, 918111, October 27, 2014.
  • Lu, Z.; Yang, R.; Wahsheh, R.A.; Abushagur, M.A.G. Nanoplasmonic Couplers and Modulators Based on Metal–Insulator–Metal Structures, Proceeding of SPIE 7604, Integrated Optics: Devices, Materials, and Technologies XIV, 760419, February 11, 2010.
  • Onbasli, M.C.; Okyay, A.K. Nanoantenna Couplers for Metal–Insulator–Metal Waveguide Interconnects, Proceeding of SPIE 7757, Plasmonics: Metallic Nanostructures and Their Optical Properties VIII, 77573R, September 10, 2010.
  • Kwon, M.-S.; Shin, J.-S.; Lee, J.H. Metal–Insulator–Silicon–Insulator–Metal Waveguide Splitters with Large-arm Separation. J. Lightwave Technol. 2015, 33, 3843–3849.10.1109/JLT.2015.2454592
  • Chang, Y.; Chen, C.-H. Design of a Broadband Plasmonic Unequal-power Splitter with a Rectangular Ring Resonator. Plasmonics 2015, 10, 739–743.10.1007/s11468-014-9860-7
  • Xie, Y.-Y.; He, C.; Li, J.-C.; Song, T.-T.; Zhang, Z.-D.; Mao, Q.-R. Theoretical Investigation of a Plasmonic Demultiplexer in MIM Waveguide Crossing with Multiple Side-coupled Hexagonal Resonators. IEEE Photonics J. 2016, 8, 1–12.
  • Yang, B.J.; Zhou, Y.J. Wavelength Filtering and Demultiplexing Devices Based on Ultrathin Corrugated MIM Waveguides. J. Mod. Opt. 2016, 63, 874–880.10.1080/09500340.2015.1107650
  • Azar, M.T.H.; Zavvari, M.; Arashmehr, A.; Zehforoosh, Y.; Mohammadi, P. Design of a High-Performance Metal–Insulator–Metal Plasmonic Demultiplexer. J. Nanophotonics 2017, 11, 026002.10.1117/1.JNP.11.026002
  • Xie, Y.; Huang, Y.; Che, H.; Zhao, W.; Xu, W.; Li, X.; Li, J. Theoretical Investigation of a Plasmonic Sensor Based on a Metal–Insulator–Metal Waveguide with a Side-coupled Nanodisk Resonator. J. Nanophotonics 2015, 9, 093099.10.1117/1.JNP.9.093099
  • Tu, X.; Pau, S. Optimized Design of N Optical Filters for Color and Polarization Imaging. Opt. Express 2016, 24, 3011–3024.10.1364/OE.24.003011
  • Setayesh, A.; Mirnaziry, S.R.; Abrishamian, M.S. Numerical Investigation of Tunable Band-pass\Band-stop Plasmonic Filters with Hollow-core Circular Ring Resonator. J. Opt. Soc Korea 2011, 15, 82–89.
  • Wang, G.; Lu, H.; Liu, X.; Mao, D.; Duan, L. Tunable Multi-channel Wavelength Demultiplexer Based on MIM Plasmonic Nanodisk Resonators at Telecommunication Regime. Opt. Express 2011, 19, 3513–3518.
  • Rakhshani, M.R.; Mansouri-Birjandi, M.A. Utilizing the Metallic Nano-rods in Hexagonal Configuration to Enhance Sensitivity of the Plasmonic Racetrack Resonator in Sensing Application. Plasmonics 2016, 1–8. DOI: 10.1007/s11468-016-0351-x.
  • Luo, S.; Li, B.; Xiong, D.; Zuo, D.; Wang, X. A High Performance Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide Coupled with a Double-cavity Structure. Plasmonics 2016, 2 , 223–227.
  • Azzazi, A.; Swillam, M.A. Nanoscale Highly Selective Plasmonic Quad Wavelength Demultiplexer Based on a Metal–Insulator–Metal. Optics Communications 2015, 344, 106–112.
  • Qu, S.; Song, C.; Xia, X.; Liang, X.; Tang, B.; Hu, Z.-D.; Wang, J. Detuned Plasmonic Bragg Grating Sensor Based on a Defect Metal–Insulator–Metal Waveguide. Sensors 2016, 16, 784.10.3390/s16060784
  • Wang, H.; Yang, J.; Wu, W.; Huang, J.; Zhang, J.; Yan, P.; Chen, D.; Xiao, G. The Transmission Characteristics of Asymmetrical Multi-teeth-shaped Plasmonic Waveguide Structure. IEEE Photonics Technol. Lett. 2016, 28, 2467–2470.10.1109/LPT.2016.2601111
  • Wang, H.; Yang, J.; Zhang, J.; Huang, J.; Wu, W.; Chen, D.; Xiao, G. Tunable Band-stop Plasmonic Waveguide Filter with Symmetrical Multiple-teeth-shaped Structure. Opt. Lett. 2016, 41, 1233–1236.10.1364/OL.41.001233
  • Nezhad, V.F.; Abaslou, S.; Abrishamian, M.S. Plasmonic Band-stop Filter with Asymmetric Rectangular Ring for WDM Networks. J. Opt. 2013, 15, 055007.10.1088/2040-8978/15/5/055007
  • Tao, J.; Hu, B.; He, X.Y.; Wang, Q.J. Tunable Subwavelength Terahertz Plasmonic Stub Waveguide Filters. IEEE Trans. Nanotechnol. 2013, 12, 1191–1197.10.1109/TNANO.2013.2285127
  • Li, H.-J.; Wang, L.-L.; Sun, B.; Huang, Z.-R.; Zhai, X. Gate-Tunable mid-Infrared Plasmonic Planar Band-stop Filters Based on a Monolayer Graphene. Plasmonics 2016, 11, 87–93.10.1007/s11468-015-0028-x
  • Gao, Y.; Ren, G.; Zhu, B.; Huang, L.; Li, H.; Liu, H.; et al. Nanomechanical Plasmonic Filter Based on Grating-assisted Gap Plasmon Waveguide. IEEE Photonics Technol. Lett. 2016, 28, 331–334.10.1109/LPT.2015.2495349
  • Prokopidis, K.P.; Zografopoulos, D.C. A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures. J. Lightwave Technol. 2013, 31, 2467–2476.10.1109/JLT.2013.2265166
  • Prokopidis, K.P.; Zografopoulos, D.C. An ADI-FDTD Formulation with Modified Lorentz Dispersion for the Study of Plasmonic Structures. IEEE Photonics Technol. Lett. 2014, 26, 2267–2270.10.1109/LPT.2014.2354532
  • Van Dorp, W.; Hagen, C.W. A Critical Literature Review of Focused Electron Beam Induced Deposition. J. Appl. Phys. 2008, 104, 10.
  • Odom, T.W.; Love, J.C.; Wolfe, D.B.; Paul, K.E.; Whitesides, G.M. Improved Pattern Transfer in Soft Lithography Using Composite Stamps. Langmuir 2002, 18, 5314–5320.10.1021/la020169 l
  • Sychugov, I.; Nakayama, Y.; Mitsuishi, K. Composition Control of Electron Beam Induced Nanodeposits by Surface Pretreatment and Beam Focusing. J. Phys. Chem. C 2009, 113, 21516–21519.10.1021/jp9079684
  • Utke, I.; Hoffmann, P.; Melngailis, J. Gas-assisted Focused Electron Beam and Ion Beam Processing and Fabrication. J. Vacuum Sci. Technol. B: Microelectron Nanometer Struct. 2008, 26, 1197–1276.10.1116/1.2955728
  • Cattoni, A.; Ghenuche, P.; Haghiri-Gosnet, A.-M.; Decanini, D.; Chen, J.; Pelouard, J.-L.; Collin, S. λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography. Nano Lett. 2011, 11, 3557–3563.10.1021/nl201004c
  • Schmid, H.; Michel, B. Siloxane Polymers for High-resolution, High-accuracy Soft Lithography. Macromolecules 2000, 33, 3042–3049.10.1021/ma982034 l

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.