241
Views
1
CrossRef citations to date
0
Altmetric
Laser Spectroscopy of Trapped Ions

Transient dynamics in cavity electromagnetically induced transparency with ion Coulomb crystals

, &
Pages 602-612 | Received 28 Jun 2017, Accepted 18 Oct 2017, Published online: 18 Nov 2017

References

  • Harris, S.E. Electromagnetically Induced Transparency. Phys. Today 1997, 50, 36. DOI: 10.1063/1.881806s.
  • Lukin, M.D.; Imamoglu, A. Controlling Photons using Electromagnetically Induced Transparency. Nature 2001, 413, 273. https://www.nature.com/nature/journal/v413/n6853/full/413273a0.html.
  • Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically Induced Transparency: Optics in Coherent Media. Rev. Mod. Phys. 2005, 77, 633–673. DOI: 10.1103/RevModPhys.77.633.
  • Lvovsky, A.I.; Sanders, B.C.; Tittel, W. Optical Quantum Memory. Nat. Photon. 2009, 3, 706–714. DOI: 10.1038/nphoton.2009.231.
  • You, J.Q.; Nori, F. Atomic Physics and Quantum Optics using Superconducting Circuits. Nature 2011, 474, 589–597. DOI: 10.1038/nature10122.
  • Kurizki, G.; Bertet, P.; Kubo, Y.; Mølmer, K.; Petrosyan, D.; Rabl, P.; Schmiedmayer, J. Quantum Technologies with Hybrid Systems. Proc. Nat. Acad. Sci. 2015, 112, 3866–3873. http://www.pnas.org/content/112/13/3866.abstract.
  • Boller, K.J.; Imamoğlu, A.; Harris, S.E. Observation of Electromagnetically Induced Transparency. Phys. Rev. Lett. 1991, 66, 2593–2596. DOI: 10.1103/PhysRevLett.66.2593.
  • Simon, C.; Afzelius, M.; Appel, J.; Boyer de la Giroday, A.; Dewhurst, S.J.; Gisin, N.; Hu, C.Y.; Jelezko, F.; Kröll, S.; Müller, J.H.; Nunn, J.; Polzik, E.; Rarity, J.; de Riedmatten, Hugues; Rosenfeld, W.; Shields, A.J>; Sköld, N.; Mark Stevenson, R.; Thew, R.; Walmsley, I.; Weber, M.; Wrachtrup, J.; Young, R.J. Quantum Memories. Eur. Phys. J. D 2010, 58 (1), 1–22. DOI: 10.1140/epjd/e2010-00103-y.
  • Scully, M.O.; Fleischhauer, M. High-sensitivity Magnetometer based on Index-enhanced Media. Phys. Rev. Lett. 1992, 69, 1360–1363. DOI: 10.1103/PhysRevLett.69.1360.
  • Budker, D.; Kimball, D.F.; Rochester, S.M.; Yashchuk, V.V. Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation. Phys. Rev. Lett. 1999, 83, 1767–1770. DOI: 10.1103/PhysRevLett.83.1767.
  • Shahriar, M.S.; Pati, G.S.; Tripathi, R.; Gopal, V.; Messall, M.; Salit, K. Ultrahigh Enhancement in Absolute and Relative Rotation Sensing using Fast and Slow Light. Phys. Rev. A 2007, 75, 053807. DOI: 10.1103/PhysRevA.75.053807.
  • Lukin, M.D.; Yelin, S.F.; Fleischhauer, M. Entanglement of Atomic Ensembles by Trapping Correlated Photon States. Phys. Rev. Lett. 2000, 84, 4232–4235. DOI: 10.1103/PhysRevLett.84.4232.
  • Dantan, A.; Pinard, M. Quantum-state Transfer Between Fields and Atoms in Electromagnetically Induced Transparency. Phys. Rev. A 2004, 69, 043810. DOI: 10.1103/PhysRevA.69.043810.
  • Gorshkov, A.V.; André, A.; Lukin, M.D.; Sørensen, A.S. Photon Storage in Λ-type Optically Dense Atomic Media I Cavity Model. Phys. Rev. A 2007, 76, 033804. DOI: 10.1103/PhysRevA.76.033804.
  • Boozer, A.D.; Boca, A.; Miller, R.; Northup, T.E.; Kimble, H.J. Reversible State Transfer between Light and a Single Trapped Atom. Phys. Rev.Lett. 2007, 98, 193601. DOI: 10.1103/PhysRevLett.98.193601.
  • Bimbard, E.; Boddeda, R.; Vitrant, N.; Grankin, A.; Parigi, V.; Stanojevic, J.; Ourjoumtsev, A.; Grangier, P. Homodyne Tomography of a Single Photon Retrieved on Demand from a Cavity-Enhanced Cold Atom Memory. Phys. Rev. Lett. 2014, 112, 033601. DOI: 10.1103/PhysRevLett.112.033601.
  • Tanji-Suzuki, H.; Chen, W.; Landig, R.; Simon, J.; Vuletić, V. Vacuum-Induced Transparency. Science 2011, 333, 1266–1269. http://science.sciencemag.org/content/333/6047/1266.
  • Imamo\={g}lu, A.; Schmidt, H.; Woods, G.; Deutsch, M. Strongly Interacting Photons in a Nonlinear Cavity. Phys. Rev. Lett. 1997, 79, 1467–1470. DOI: 10.1103/PhysRevLett.79.1467.
  • Grangier, P.; Walls, D.F.; Gheri, K.M. Comment on "Strongly Interacting Photons in a Nonlinear Cavity". Phys. Rev. Lett. 1998, 81, 2833–2833. DOI: 10.1103/PhysRevLett.81.2833.
  • Gheri, K.M.; Alge, W.; Grangier, P. Quantum Analysis of the Photonic Blockade Mechanism. Phys. Rev. A 1999, 60, R2673–R2676. DOI: 10.1103/PhysRevA.60.R2673.
  • Werner, M.J.; Imamoglu, A. Photon-photon Interactions in Cavity Electromagnetically Induced Transparency. Phys. Rev. A 1999, 61, 011801. DOI: 10.1103/PhysRevA.61.011801.
  • Dantan, A.; Cviklinski, J.; Giacobino, E.; Pinard, M. Spin Squeezing and Light Entanglement in Coherent Population Trapping. Phys. Rev. Lett. 2006, 97, 023605. DOI: 10.1103/PhysRevLett.97.023605.
  • Nikoghosyan, G.; Fleischhauer, M. Photon-Number Selective Group Delay in Cavity Induced Transparency. Phys. Rev. Lett. 2010, 105, 013601. DOI: 10.1103/PhysRevLett.105.013601.
  • Genes, C.; Ritsch, H.; Drewsen, M.; Dantan, A. Atom-membrane Cooling and Entanglement using Cavity Electromagnetically Induced Transparency. Phys. Rev. A 2011, 84, 051801. DOI: 10.1103/PhysRevA.84.051801.
  • Bienert, M.; Morigi, G. Cavity Cooling of a Trapped Atom using Electromagnetically Induced Transparency, New. J. Phys. 2012, 14, 023002. http://stacks.iop.org/1367-2630/14/i=2/a=023002.
  • Kampschulte, T.; Alt, W.; Manz, S.; Martinez-Dorantes, M.; Reimann, R.; Yoon, S.; Meschede, D.; Bienert, M.; Morigi, G. Electromagnetically-induced-transparency Control of Single-atom Motion in an Optical Cavity. Phys. Rev. A 2014, 89, 033404. DOI: 10.1103/PhysRevA.89.033404.
  • Müller, G.; Müller, M.; Wicht, A.; Rinkleff, R.H.; Danzmann, K. Optical Resonator with Steep Internal Dispersion. Phys. Rev. A 1997, 56, 2385–2389. DOI: 10.1103/PhysRevA.56.2385.
  • Lukin, M.D.; Fleischhauer, M.; Scully, M.O.; Velichansky, V.L. Intracavity Electromagnetically Induced Transparency. Opt. Lett. 1998, 23, 295–297. http://ol.osa.org/abstract.cfm?URI=ol-23-4-295.
  • Wang, H.; Goorskey, D.J.; Burkett, W.H.; Xiao, M. Cavity-linewidth Narrowing by Means of Electromagnetically Induced Transparency. Opt. Lett. 2000, 25, 1732–1734. http://ol.osa.org/abstract.cfm?URI=ol-25-23-1732.
  • Hernandez, G.; Zhang, J.; Zhu, Y. Vacuum Rabi Splitting and Intracavity Dark State in a Cavity-atom System. Phys. Rev. A 2007, 76, 053814. DOI: 10.1103/PhysRevA.76.053814.
  • Wu, H.; Gea-Banacloche, J.; Xiao, M. Observation of Intracavity Electromagnetically Induced Transparency and Polariton Resonances in a Doppler-Broadened Medium. Phys. Rev. Lett. 2008, 100, 173602. DOI: 10.1103/PhysRevLett.100.173602.
  • Zhang, J.; Hernandez, G.; Zhu, Y. Slow Light with Cavity Electromagnetically Induced Transparency. Opt. Lett. 2008, 33, 46–48. http://ol.osa.org/abstract.cfm?URI=ol-33-1-46.
  • Lauprêtre, T.; Proux, C.; Ghosh, R.; Schwartz, S.; Goldfarb, F.; Bretenaker, F. Photon Lifetime in a Cavity Containing a Slow-light Medium. Opt. Lett. 2011, 36, 1551–1553. http://ol.osa.org/abstract.cfm?URI=ol-36-9-1551.
  • Parigi, V.; Bimbard, E.; Stanojevic, J.; Hilliard, A.J.; Nogrette, F.; Tualle-Brouri, R.; Ourjoumtsev, A.; Grangier, P. Observation and Measurement of Interaction-Induced Dispersive Optical Nonlinearities in an Ensemble of Cold Rydberg Atoms. Phys. Rev. Lett. 2012, 109, 233602. DOI: 10.1103/PhysRevLett.109.233602.
  • Ningyuan, J.; Georgakopoulos, A.; Ryou, A.; Schine, N.; Sommer, A.; Simon, J. Observation and Characterization of Cavity Rydberg Polaritons. Phys. Rev. A 2016, 93, 041802. DOI: 10.1103/PhysRevA.93.041802.
  • Boddeda, R.; Usmani, I.; Bimbard, E.; Grankin, A.; Ourjoumtsev, A.; Brion, E.; Grangier, P. Rydberg-induced Optical Nonlinearities from a Cold Atomic Ensemble Trapped Inside a Cavity. J. Phys. B: Atom. Mol. Opt. Phys. 2016, 49, 084005. http://stacks.iop.org/0953-4075/49/i=8/a=084005.
  • Albert, M.; Dantan, A.; Drewsen, M. Cavity Electromagnetically Induced Transparency and All-optical Switching using Ion Coulomb Crystals. Nat. Photonics. 2011, 5, 633. http://www.nature.com/nphoton/journal/v5/n10/abs/nphoton.2011.214.html.
  • Mücke, M.; Figueroa, E.; Bochmann, J.; Hahn, C.; Murr, K.; Ritter, S.; Villas-Boas, C.J.; Rempe, G. Electromagnetically Induced Transparency with Single Atoms in a Cavity. Nature 2010, 465, 755–758. DOI: 10.1038/nature09093.
  • Kampschulte, T.; Alt, W.; Brakhane, S.; Eckstein, M.; Reimann, R.; Widera, A.; Meschede, D. Optical Control of the Refractive Index of a Single Atom. Phys. Rev. Lett. 2010, 105, 153603. DOI: 10.1103/PhysRevLett.105.153603.
  • Dantan, A.; Cviklinski, J.; Pinard, M.; Grangier, P. Dynamics of a Pulsed Continuous-variable Quantum Memory. Phys. Rev. A 2006, 73, 032338. DOI: 10.1103/PhysRevA.73.032338.
  • Wineland, D.J.; Bergquist, J.C.; Itano, W.M.; Bollinger, J.J.; Manney, C.H. Atomic-Ion Coulomb Clusters in an Ion Trap. Phys. Rev. Lett. 1987, 59, 2935–2938. DOI: 10.1103/PhysRevLett.59.2935.
  • Diedrich, F.; Peik, E.; Chen, J.M.; Quint, W.; Walther, H. Observation of a Phase Transition of Stored Laser-Cooled Ions. Phys. Rev. Lett. 1987, 59, 2931–2934. DOI: 10.1103/PhysRevLett.59.2931.
  • Drewsen, M.; Brodersen, C.; Hornekær, L.; Hangst, J.S.; Schifffer, J.P. Large Ion Crystals in a Linear Paul Trap. Phys. Rev. Lett. 1998, 81, 2878–2881. DOI: 10.1103/PhysRevLett.81.2878.
  • Herskind, P.F.; Dantan, A.; Marler, J.P.; Albert, M.; Drewsen, M. Realization of Collective Strong Coupling with Ion Coulomb Crystals in an Optical Cavity. Nat Physics. 2009, 5, 494–498. DOI: 10.1038/nphys1302.
  • Dantan, A.; Albert, M.; Drewsen, M. All-cavity Electromagnetically Induced Transparency and Optical Switching: Semiclassical Theory. Phys. Rev. Lett. 2012, 85, 013840. DOI: 10.1103/PhysRevA.85.013840.
  • Zangenberg, K.R.; Dantan, A.; Drewsen, M. Spatial Mode Effects in a Cavity EIT-based Quantum Memory with Ion Coulomb Crystals. J. Phys. B. At. Mol. Opt . Phys. 2012, 45, 124011. http://iopscience.iop.org/0953-4075/45/12/124011/.
  • Clausen, C.; Sangouard, N.; Drewsen, M. Analysis of a Photon Number Resolving Detector based on Fluorescence Readout of an Ion Coulomb Crystal Quantum Memory Inside an Optical Cavity. New J. Phys. 2013, 15, 025021. http://iopscience.iop.org/1367-2630/15/2/025021/.
  • Fry, E.S.; Li, X.; Nikonov, D.; Padmabandu, G.G.; Scully, M.O.; Smith, A.V.; Tittel, F.K.; Wang, C.; Wilkinson, S.R.; Zhu, S.Y. Atomic Coherence Effects within the Sodium D1 Line: Lasing without Inversion via Population Trapping. Phys. Rev. Lett. 1993, 70, 3235–3238. DOI: 10.1103/PhysRevLett.70.3235.
  • Harris, S.E.; Luo, Z.F. Preparation Energy for Electromagnetically Induced Transparency. Phys. Rev. A 1995, 52, R928–R931. DOI: 10.1103/PhysRevA.52.R928.
  • Qing Li, Y.; Xiao, M. Transient Properties of an Electromagnetically Induced Transparency in Three-level Atoms. Opt. Lett. 1995, 20, 1489–1491. http://ol.osa.org/abstract.cfm?URI=ol-20-13-1489.
  • Chen, H.X.; Durrant, A.V.; Marangos, J.P.; Vaccaro, J.A. Observation of Transient Electromagnetically Induced Transparency in a Rubidium Λ system. Phys. Rev. A 1998, 58, 1545–1548. DOI: 10.1103/PhysRevA.58.1545.
  • de Echaniz, S.R.; Greentree, A.D.; Durrant, A.V.; Segal, D.M.; Marangos, J.P.; Vaccaro, J.A. Observation of Transient Gain without Population Inversion in a Laser-cooled Rubidium Λ System. Phys. Rev. A 2001, 64, 055801. DOI: 10.1103/PhysRevA.64.055801.
  • Greentree, A.D.; Smith, T.B.; de Echaniz, S.R.; Durrant, A.V.; Marangos, J.P.; Segal, D.M.; Vaccaro, J.A. Resonant and Off-resonant Transients in Electromagnetically Induced Transparency: Turn-on and Turn-off dynamics. Phys. Rev. A 2002, 65, 053802. DOI: 10.1103/PhysRevA.65.053802.
  • Albert, M.; Marler, J.P.; Herskind, P.F.; Dantan, A.; Drewsen, M. Collective Strong Coupling between Ion Coulomb Crystals and an Optical Cavity Field: Theory and Experiment. Phys. Rev. A. 2012, 85, 023818. DOI: 10.1103/PhysRevA.85.023818.
  • Herskind, P.; Dantan, A.; Langkilde-Lauesen, M.; Mortensen, A.; Sørensen, J.; Drewsen, M. Loading of Large Ion Coulomb Crystals into a Linear Paul Trap Incorporating an Optical Cavity. Appl. Phys. B. 2008, 93, 373–379. DOI: 10.1007/s00340-008-3199-8.
  • Herskind, P.F.; Dantan, A.; Albert, M.; Marler, J.P.; Drewsen, M. Positioning of the rf Potential Minimum Line of a Linear Paul Trap with Micrometer Precision. J. Phys. B. At. Mol. Opt. Phys. 2009, 42, 154008+. DOI: 10.1088/0953-4075/42/15/154008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.