538
Views
4
CrossRef citations to date
0
Altmetric
Ion Trap Techniques

Precise positioning of an ion in an integrated Paul trap-cavity system using radiofrequency signals

, , &
Pages 520-528 | Received 31 Jul 2017, Accepted 02 Nov 2017, Published online: 06 Dec 2017

References

  • Keller, M. ; Lange, B. ; Hayasaka, K. ; Lange, W. ; Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 2004, 431 (7012), 1075–1078. DOI: 10.1038/nature02961
  • Leibrandt, D.R. ; Labaziewicz, J. ; Vuletić, V. ; Chuang, I.L. Cavity Sideband Cooling of a Single Trapped Ion. Phys. Rev. Lett. 2009, 103 , 103001. DOI: 10.1103/PhysRevLett.103.103001
  • Herskind, P.F. ; Dantan, A. ; Marler, J.P. ; Albert, M. ; Drewsen, M. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity. Nat Phys 2009, 5 (7), 494–498. DOI: 10.1038/nphys1302
  • Stute, A. ; Casabone, B. ; Schindler, P. ; Monz, T. ; Schmidt, P.O. ; Brandstatter, B. ; Northup, T.E. ; Blatt, R. Tunable ion-photon entanglement in an optical cavity. Nature 2012, 485 (7399), 482–485. DOI: 10.1038/nature11120
  • Begley, S. ; Vogt, M. ; Gulati, G.K. ; Takahashi, H. ; Keller, M. Optimized Multi-ion Cavity Coupling. Phys. Rev. Lett. 2016, 116 , 223001. DOI: 10.1103/PhysRevLett.116.223001
  • Harty, T.P. ; Allcock, D.T.C. ; Ballance, C.J. ; Guidoni, L. ; Janacek, H.A. ; Linke, N.M. ; Stacey, D.N. ; Lucas, D.M. High-fidelity Preparation, Gates, Memory, and Readout of a Trapped-ion Quantum Bit. Phys. Rev. Lett. 2014, 113 , 220501. DOI: 10.1103/PhysRevLett.113.220501
  • Harty, T.P. ; Sepiol, M.A. ; Allcock, D.T.C. ; Ballance, C.J. ; Tarlton, J.E. ; Lucas, D.M. High-Fidelity Trapped-Ion Quantum Logic Using Near-field Microwaves. Phys. Rev. Lett. 2016, 117 , 140501. DOI: 10.1103/PhysRevLett.117.140501
  • Monz, T. ; Schindler, P. ; Barreiro, J.T. ; Chwalla, M. ; Nigg, D. ; Coish, W.A. ; Harlander, M. ; Hänsel, W. ; Hennrich, M. ; Blatt, R. 14-qubit Entanglement: Creation and Coherence. Phys. Rev. Lett. 2011, 106 , 130506. DOI: 10.1103/PhysRevLett.106.130506
  • Lekitsch, B. ; Weidt, S. ; Fowler, A.G. ; Mølmer, K. ; Devitt, S.J. ; Wunderlich, C. ; Hensinger, W.K. Blueprint for a Microwave Trapped Ion Quantum Computer. Science Advances 2017, 3 (2). Available from: http://advances.sciencemag.org/content/3/2/e1601540
  • Crick, D.R. ; Donnellan, S. ; Ananthamurthy, S. ; Thompson, R.C. ; Segal, D.M. Fast Shuttling of Ions in a Scalable Penning Trap Array. Review of Scientific Instruments 2010, 81 (1), 013111. DOI: 10.1063/1.3276699
  • You, J.Q. ; Tsai, J.S. ; Nori, F. Scalable Quantum Computing with Josephson Charge Qubits. Phys. Rev. Lett. 2002, 89 , 197902. DOI: 10.1103/PhysRevLett.89.197902.
  • Cirac, J.I. ; Zoller, P. ; Kimble, H.J. ; Mabuchi, H. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Phys. Rev. Lett. 1997, 78 , 3221–3224. DOI: 10.1103/PhysRevLett.78.3221
  • Hucul, D. ; Inlek, I.V. ; Vittorini, G. ; Crocker, C. ; Debnath, S. ; Clark, S.M. ; Monroe, C. Modular Entanglement of Atomic Qubits Using Photons and Phonons. Nat. Phys. 2015, 11 (1), 37–42. DOI: 10.1038/nphys3150
  • Moehring, D.L. ; Maunz, P. ; Olmschenk, S. ; Younge, K.C. ; Matsukevich, D.N. ; Duan, L.M. ; Monroe, C. Entanglement of single-atom quantum bits at a distance. Nature 2007, 449 (7158), 68–71. DOI: 10.1038/nature06118
  • Steiner, M. ; Meyer, H.M. ; Deutsch, C. ; Reichel, J. ; Köhl, M. Single Ion Coupled to an Optical Fiber Cavity. Phys. Rev. Lett. 2013, 110 , 043003. DOI: 10.1103/PhysRevLett.110.043003
  • Ballance, T.G. ; Meyer, H.M. ; Kobel, P. ; Ott, K. ; Reichel, J. ; Köhl, M. Cavity-induced Backaction in Purcell-enhanced Photon Emission of a Single Ion in an Ultraviolet Fiber Cavity. Phys. Rev. A 2017, 95 , 033812. DOI: 10.1103/PhysRevA.95.033812
  • Brandsttter, B. ; McClung, A. ; Schppert, K. ; Casabone, B. ; Friebe, K. ; Stute, A. ; Schmidt, P.O. ; Deutsch, C. ; Reichel, J. ; Blatt, R. ; et al. Integrated Fiber-mirror Ion Trap for Strong Ion-cavity Coupling. Rev. Sci. Instrum. 2013, 84 (12), 123104. DOI: 10.1063/1.4838696
  • Takahashi, H. ; Kassa, E. ; Christoforou, C. ; Keller, M. Cavity-induced Anticorrelated Photon-emission Rates of a Single Ion. Phys. Rev. A 2017, 96 , 023824. DOI: 10.1103/PhysRevA.96.023824
  • Herskind, P.F. ; Dantan, A. ; Albert, M. ; Marler, J.P. ; Drewsen, M. Positioning of the rf Potential Minimum Line of a Linear Paul Trap with Micrometer Precision. J. Phys. B: At Mol Opt Phys. 2009, 42 (15), 154008. Available from: http://stacks.iop.org/0953-4075/42/i=15/a=154008
  • Takahashi, H. ; Wilson, A. ; Riley-Watson, A. ; Oruevi, F. ; Seymour-Smith, N. ; Keller, M. ; Lange, W. An Integrated Fiber Trap for Single-ion Photonics. J. Phys. 2013, 15 (5), 053011. Available from: http://stacks.iop.org/1367-2630/15/i=5/a=053011
  • Kassa, E. Single Ion Coupled to a High Finesse Optical Fibre Cavity for cQED in the Strong Coupling Regime [Ph.D. Thesis], University of Sussex.
  • Berkeland, D.J. ; Miller, J.D. ; Bergquist, J.C. ; Itano, W.M. ; Wineland, D.J. Minimization of Ion Micromotion in a Paul Trap. J. Appl. Phys. 1998, 83 (10), 5025–5033. DOI: 10.1063/1.367318
  • Simulated on COMSOL Multiphysics 4.4
  • Takahashi, H. ; Morphew, J. ; Oručević, F. ; Noguchi, A. ; Kassa, E. ; Keller, M. Novel Laser Machining of Optical Fibers for Long Cavities with Low Birefringence. Opt. Express 2014, 22 (25), 31317–31328. Available from: http://www.opticsexpress.org/abstract.cfm?URI=oe-22-25-31317
  • PXY100, Piezojena Systems
  • Noliac Multilayer NAC2124-C04
  • Noliac Monolayer NCE51-Ring-OD15-I9-TH2
  • Chuah, B.L. ; Lewty, N.C. ; Cazan, R. ; Barrett, M.D. Detection of Ion Micromotion in a Linear Paul Trap with a High Finesse Cavity. Opt. Express 2013, 21 (9), 10632–10641.
  • Gulati, G.K. ; Takahashi, H. ; Podoliak, N. ; Horak, P. ; Keller, M. Fiber Cavities with Integrated Mode Matching Optics. Sci. Rep. 2017, 7 (1). DOI: 10.1038/s41598-017-05729-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.