78
Views
0
CrossRef citations to date
0
Altmetric
Articles

Propagation of Bessel-X pulses in a hybrid photonic crystal

Pages 1033-1039 | Received 22 Sep 2017, Accepted 20 Dec 2017, Published online: 15 Jan 2018

References

  • Hernández-Figueroa, H.E.; Zamboni-Rached, M.; Recami, E., Eds. Localized Waves; Wiley: Boboken, NJ, 2008.
  • Hernández-Figueroa, H.E.; Recami, E.; Zamboni-Rached, M., Eds. Non-diffracting Waves; Wiley-VCH Verlag GmbH & Co.: Weiheim, Germany, 2014.
  • Silberberg, Y. Collapse of Optical Pulses. Opt. Lett. 1990, 15 (22), 1282–1284.
  • Lu, J.Y.; Greenleaf, J. Nondiffracting X Waves -- Exact Solutions to Free-space Scalar Wave Equation and their Finite Aperture Realizations. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1992, 39 (1), 19–31.
  • Lu, J.Y.; Greenleaf, J. Experimental Verification of Nondiffracting X Waves. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 1992, 39 (3), 441–446.
  • Saari, P.; Reivelt, K. Evidence of X-shaped Propagation-invariant Localized Light Waves. Phys. Rev. Lett. 1997, 79 (21), 4135–4138.
  • Saari, P.; Sõnajalg, H. Pulsed Bessel Beams. Laser Phys. 1997, 7 (1), 32–39.
  • Sõnajalg, H.; Rätsep, M.; Saari, P. Demonstration of the Bessel-X Pulse Propagating with Strong Lateral and Longitudinal Localization in a Dispersive Medium. Opt. Lett. 1997, 22 (5), 310–312.
  • Salo, J.; Fagerholm, J.; Friberg, A.T.; Salomaa, M.M. Unified Description of Nondiffracting X and Y Waves. Phys. Rev. E 2000, 62, 4261–4275.
  • Grunwald, R.; Kebbel, V.; Griebner, U.; Neumann, U.; Kummrow, A.; Rini, M.; Nibbering, E.T.J.; Piché, M.; Rousseau, G.; Fortin, M. Generation and Characterization of Spatially and Temporally Localized Few-cycle Optical Wave Packets. Phys. Rev. A 2003, 67, 063820.
  • Bowlan, P.; Valtna-Lukner, H.; Lohmus, M.; Piksarv, P.; Saari, P.; Trebino, R. Measuring the Spatiotemporal Field of Ultrashort Bessel-X Pulses. Opt. Lett. 2009, 34 (15), 2276–2278.
  • Bonaretti, F.; Faccio, D.; Clerici, M.; Biegert, J.; Di Trapani, P. Spatiotemporal Amplitude and Phase Retrieval of Bessel-X Pulses Using a Hartmann-Shack Sensor. Opt. Express 2009, 17 (12), 9804–9809.
  • Shaarawi, A.M.; El-Halawani, A.S.; Besieris, I.M. Diffraction of Spatiotemporally Localized X-Wave Pulses from a Screen Containing Two Rectangular Slits. J. Opt. Soc. Am. A 2011, 28 (4), 534–540.
  • Chung, K.B. Self-reconstruction of Obstructed Bessel-X Pulses Modeled by the FDTD Method. Opt. Commun. 2014, 320, 43–48.
  • Chung, K.B. Boundary Diffraction Waves Generated from Bessel-X Pulses Modeled by the FDTD Method. Opt. Commun. 2015, 350, 28–32.
  • Durnin, J. Exact Solutions for Nondiffracting Beams. I. The Scalar Theory. J. Opt. Soc. Am. A 1987, 4 (4), 651–654.
  • Durnin, J.; Miceli, J.J.; Eberly, J.H. Diffraction-free Beams. Phys. Rev. Lett. 1987, 58 (15), 1499–1501.
  • Di Trapani, P.; Valiulis, G.; Piskarskas, A.; Jedrkiewicz, O.; Trull, J.; Conti, C.; Trillo, S. Spontaneously Generated X-shaped Light Bullets. Phys. Rev. Lett. 2003, 91 (9), 093904.
  • Conti, C.; Trillo, S.; Di Trapani, P.; Valiulis, G.; Piskarskas, A.; Jedrkiewicz, O.; Trull, J. Nonlinear Electromagnetic X Waves. Phys. Rev. Lett. 2003, 90, 170406.
  • Malomed, B.A.; Mihalache, D.; Wise, F.; Torner, L. Spatiotemporal Optical Solitons. J. Opt. B: Quantum Semiclass. Opt. 2005, 7 (5), R53.
  • Colman, P.; Husko, C.; Combrié, S.; Sagnes, I.; Wong, C.W.; Rossi, A.D. Temporal Solitons and Pulse Compression in Photonic Crystal Waveguides. Nature Photon. 2010, 4 (12), 862–868.
  • Majus, D.; Tamošauskas, G.; Gražulevičiūt\.{e}, I.; Garejev, N.; Lotti, A.; Couairon, A.; Faccio, D.; Dubietis, A. Nature of Spatiotemporal Light Bullets in Bulk Kerr Media. Phys. Rev. Lett. 2014, 112, 193901.
  • Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, NJ, 2008.
  • Kosaka, H.; Kawashima, T.; Tomita, A.; Notomi, M.; Tamamura, T.; Sato, T.; Kawakami, S. Self-collimating Phenomena in Photonic Crystals. Appl. Phys. Lett. 1999, 74 (9), 1212–1214.
  • Chigrin, D.; Enoch, S.; Torres, C.S.; Tayeb, G. Self-guiding in Two-dimensional Photonic Crystals. Opt. Express 2003, 11 (10), 1203–1211.
  • Kim, A.; Chung, K.B.; Wu, J.W. Control of Self-collimated Bloch Waves by Partially Flat Equifrequency Contours in Photonic Crystals. Appl. Phys. Lett. 2006, 89 (25), 251120.
  • Rakich, P.T.; Dahlem, M.S.; Tandon, S.; Ibanescu, M.; Soljačić, M.; Petrich, G.S.; Joannopoulos, J.D.; Kolodziejski, L.A.; Ippen, E.P. Achieving Centimetre-scale Supercollimation in a Large-area Two-dimensional Photonic Crystal. Nature Mater. 2006, 5 (2), 93–96.
  • Prather, D.W.; Shi, S.; Murakowski, J.; Schneider, G.J.; Sharkawy, A.; Chen, C.; Miao, B.; Martin, R. Self-collimation in Photonic Crystal Structures: A New Paradigm for Applications and Device Development. J. Phys. D: Appl. Phys. 2007, 40 (9), 2635–2651.
  • Hamam, R.E.; Ibanescu, M.; Johnson, S.G.; Joannopoulos, J.D.; Soljacic, M. Broadband Super-collimation in a Hybrid Photonic Crystal Structure. Opt. Express 2009, 17 (10), 8109–8118.
  • Mocella, V.; Cabrini, S.; Chang, A.S.P.; Dardano, P.; Moretti, L.; Rendina, I.; Olynick, D.; Harteneck, B.; Dhuey, S. Self-collimation of Light Over Millimeter-scale Distance in a Quasi-zero-average-index Metamaterial. Phys. Rev. Lett. 2009, 102 (13), 133902.
  • Christodoulides, D.N.; Efremidis, N.K.; Di Trapani, P.; Malomed, B.A. Bessel X Waves in Two- and Three-dimensional Bidispersive Optical Systems. Opt. Lett. 2004, 29 (13), 1446–1448.
  • Longhi, S.; Janner, D. X-shaped Waves in Photonic Crystals. Phys. Rev. B 2004, 70 (23), 235123.
  • Longhi, S. Localized and Nonspreading Spatiotemporal Wannier Wave Packets in Photonic Crystals. Phys. Rev. E 2005, 71 (1), 016603.
  • Manela, O.; Segev, M.; Christodoulides, D.N. Nondiffracting Beams in Periodic Media. Opt. Lett. 2005, 30 (19), 2611–2613.
  • Staliunas, K.; Serrat, C.; Herrero, R.; Cojocaru, C.; Trull, J. Subdiffractive Light Pulses in Photonic Crystals. Phys. Rev. E 2006, 74 (1), 016605.
  • Loiko, Y.; Herrero, R.; Staliunas, K. Ultrashort Light Pulses in Photonic Crystals in Subdiffractive Regimes. J. Opt. Soc. Am. B 2007, 24 (7), 1639–1645.
  • Zhou, C.; Gong, Q.; Yao, P.; Zhao, D.; Jiang, X. Bulletlike Light Pulses in Photonic Crystals. Appl. Phys. Lett. 2008, 93 (6), 061103.
  • Kan, W.W.; Liang, B.; Zhu, X.F.; Tu, J.; Zou, X.Y.; Cheng, J.C. Nonpropagating X-shaped Acoustic Waves in Sonic Crystals without Defects. Appl. Phys. Lett. 2010, 97 (22), 223504.
  • Chung, K.B. Propagation of Self-collimated Ultrashort Pulses in a Hybrid Photonic Crystal. Opt. Express 2011, 19 (17), 15705–15710.
  • Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd ed.; Artech House: Norwood, MA, 2005.
  • Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.; Johnson, S.G. Meep: A Flexible Free-software Package for Electromagnetic Simulations by the FDTD Method. Comput. Phys. Commun. 2010, 181 (3), 687–702.
  • Lambert, E.; Fiers, M.; Nizamov, S.; Tassaert, M.; Johnson, S.; Bienstman, P.; Bogaerts, W. Python Bindings for the Open Source Electromagnetic Simulator Meep. Comput. Sci. Eng. 2011, 13 (3), 53–65.
  • Meep Reference. http://ab-initio.mit.edu/wiki/index.php/ (accessed Jan 9, 2018).
  • Python Meep Documentation (FDTD Simulation). http://claudia.intec.ugent.be/software/python-meep/python\_meep\_documentation (accessed Jan 9, 2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.