1,672
Views
2
CrossRef citations to date
0
Altmetric
Cold Atoms and Molecules

Atom chips with free-standing two-dimensional electron gases: advantages and challenges

ORCID Icon, &
Pages 677-692 | Received 01 Aug 2017, Accepted 27 Nov 2017, Published online: 24 Jan 2018

References

  • Keil, M.; Amit, O.; Zhou, S.; Groswasser, D.; Japha, Y.; Folman, R. Fifteen Years of Cold Matter on the Atom Chip: Promise, Realizations, and Prospects. J. Mod. Opt. 2016, 63 (18), 1840–1885.
  • Reichel, J.; Hänsel, W.; Hänsch, T. Atomic Micromanipulation with Magnetic Surface Traps. Phys. Rev. Lett. 1999, 83 (17), 3398.
  • De Motte, D.; Grounds, A.R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G.S.; Neilinger, P.; Oelsner, G.; Il’ichev, E.; Grajcar, M.; et al. Experimental System Design for the Integration of Trapped-ion and Superconducting Qubit Systems. Quantum Inf. Process. 2016, 15 (12), 5385–5414.
  • Cridland, A.; Lacy, J.; Pinder, J.; Verdú, J. Single Microwave Photon Detection with a Trapped Electron. Photonics (MDPI), 2016, 3, 59.
  • Meek, S.A.; Bethlem, H.L.; Conrad, H.; Meijer, G. Trapping Molecules on a Chip in Traveling Potential Wells. Phys. Rev. Lett. 2008, 100, 153003.
  • Hammes, M.; Rychtarik, D.; Engeser, B.; Nägerl, H.C.; Grimm, R. Evanescent-wave Trapping and Evaporative Cooling of an Atomic Gas at the Crossover to Two Dimensions. Phys. Rev. Lett. 2003, 90 (17), 173001.
  • Vetsch, E.; Reitz, D.; Sagué, G.; Schmidt, R.; Dawkins, S.T.; Rauschenbeutel, A. Optical Interface Created by Laser-cooled Atoms Trapped in the Evanescent Field Surrounding an Optical Nanofiber. Phys. Rev. Lett. 2010, 104, 203603. DOI: 10.1103/PhysRevLett.104.203603.
  • Henkel, C. Magnetostatic Field Noise near Metallic Surfaces. Eur. Phys. J. D 2005, 35 (1), 59–67.
  • Sinclair, C.D.J.; Curtis, E.A.; Garcia, I.L.; Retter, J.A.; Hall, B.V.; Eriksson, S.; Sauer, B.E.; Hinds, E.A. Bose-Einstein Condensation on a Permanent-magnet Atom Chip. Phys. Rev. A 2005, 72, 031603.
  • Lin, Y.J.; Teper, I.; Chin, C.; Vuletić, V. Impact of the Casimir-polder Potential and Johnson Noise on Bose-Einstein Condensate Stability Near Surfaces. Phys. Rev. Lett. 2004, 92, 050404.
  • Zhang, B.; Henkel, C.; Haller, E.; Wildermuth, S.; Hofferberth, S.; Krüger, P.; Schmiedmayer, J. Relevance of Sub-surface Chip Layers for the Lifetime of Magnetically Trapped Atoms. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 2005, 35 (1), 97–104.
  • Wang, D.W.; Lukin, M.D.; Demler, E. Disordered Bose-Einstein Condensates in Quasi-one-dimensional Magnetic Microtraps. Phys. Rev. Lett. 2004, 92, 076802.
  • Krüger, P.; Andersson, L.M.; Wildermuth, S.; Hofferberth, S.; Haller, E.; Aigner, S.; Groth, S.; Bar-Joseph, I.; Schmiedmayer, J. Potential Roughness near Lithographically Fabricated Atom Chips. Phys. Rev. A 2007, 76, 063621. DOI: 10.1103/PhysRevA.76.063621.
  • Fortágh, J.; Ott, H.; Kraft, S.; Günther, A.; Zimmermann, C. Surface Effects in Magnetic Microtraps. Phys. Rev. A 2002, 66, 041604.
  • Jones, M.P.A.; Vale, C.J.; Sahagun, D.; Hall, B.V.; Hinds, E.A. Spin Coupling between Cold Atoms and the Thermal Fluctuations of a Metal Surface. Phys. Rev. Lett. 2003, 91, 080401.
  • Estéve, J.; Aussibal, C.; Schumm, T.; Figl, C.; Mailly, D.; Bouchoule, I.; Westbrook, C.I.; Aspect, A. Role of Wire Imperfections in Micromagnetic Traps for Atoms. Phys. Rev. A 2004, 70, 043629.
  • Salem, R.; Japha, Y.; Chabe, J.; Hadad, B.; Keil, M.; Milton, K.A.; Folman, R. Nanowire Atomchip Traps for Sub-micron Atom-surface Distances. New J. Phys. 2010, 12, 023039.
  • Allwood, D.A.; Schrefl, T.; Hrkac, G.; Hughes, I.G.; Adams, C.S. Mobile Atom Traps using Magnetic Nanowires. Appl. Phys. Lett. 2006, 89 (1), 014102.
  • Trebbia, J.B. Garrido Alzar, C.L.; Cornelussen, R.; Westbrook, C.I.; Bouchoule, I. Roughness Suppression via Rapid Current Modulation on an Atom Chip. Phys. Rev. Lett. 2007, 98, 263201.
  • Wildermuth, S.; Hofferberth, S.; Lesanovsky, I.; Groth, S.; Krüger, P.; Schmiedmayer, J.; Bar-Joseph, I. Sensing Electric and Magnetic Fields with Bose-Einstein Condensates. Appl. Phys. Lett. 2006, 88, 264103.
  • Wildermuth, S.; Hofferberth, S.; Lesanovsky, I.; Haller, E.; Andersson, L.; Groth, S.; Bar-Joseph, I.; Krüger, P.; Schmiedmayer, J. Bose-Einstein Condensates: Microscopic Magnetic-field Imaging. Nature 2005, 435 (7041), 440.
  • Yang, F.; Kollár, A.J.; Taylor, S.F.; Turner, R.W.; Lev, B.L. Scanning Quantum Cryogenic Atom Microscope. Phys. Rev. Applied 2017, 7, 034026.
  • Krüger, P.; Wildermuth, S.; Hofferberth, S.; Mauritz, A.L.; Groth, S.; Bar-Joseph, I.; Schmiedmayer, J. Cold Atoms Close to Surfaces: Measuring Magnetic Field Roughness and Disorder Potentials. J. Phys.: Conf. Ser. 2005, 19, 56–65.
  • Roth, B.; Sepulveda, N.; Wikswo, J. Using a Magnetometer to Image a Two-dimensional Current Distribution. J. Appl. Phys. 1989, 65, 361–372.
  • Aigner, S. Della Pietra, L.; Japha, Y.; Entin-Wohlman, O.; David, T.; Salem, R.; Folman, R.; Schmiedmayer, J. Long-range Order in Electronic Transport through Disordered Metal Films. Science 2008, 319 (5867), 1226–1229.
  • Bastard, G. Wave Mechanics Applied to Semiconductor Heterostructures; John Wiley and Sons: New York, 1990.
  • Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530.
  • Judd, T.E.; Scott, R.G.; Martin, A.M.; Kaczmarek, B.; Fromhold, T.M. Quantum Reflection of Ultracold Atoms from Thin Films, Graphene and Semiconductor Heterostructures, New. J. Phys. 2011, 13 (8), 083020.
  • Efros, A.L.; Pikus, F.G.; Burnett, V.G. Density of States of a Two-dimensional Electron Gas in a Long-range Random Potential. Phys. Rev. B 1993, 47 (4), 2233–2243.
  • Berggren, K.F.; Pepper, M. Electrons in One Dimension, Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 1914, 2010 (368), 1141–1162.
  • Judd, T.E.; Scott, R.G.; Sinuco, G.; Montgomery, T.W.A.; Martin, A.M.; Krger, P.; Fromhold, T.M. Zone-plate Focusing of Bose-Einstein Condensates for Atom Optics and Erasable High-speed Lithography of Quantum Electronic Components, New. J. Phys. 2010, 12 (6), 063033. http://stacks.iop.org/1367-2630/12/i=6/a=063033
  • Sinuco-León, G.; Kaczmarek, B.; Krüger, P.; Fromhold, T.M. Atom Chips with Two-dimensional Electron Gases: Theory of Near-surface Trapping and Ultracold-atom Microscopy of Quantum Electronic Systems. Phys. Rev. A 2011, 83, 021401.
  • Jahn, J.P.; Munsch, M.; Béguin, L.; Kuhlmann, A.V.; Renggli, M.; Huo, Y.; Ding, F.; Trotta, R.; Reindl, M.; Schmidt, O.G.; et al. An Artificial Rb Atom in a Semiconductor with Lifetime-limited Linewidth. Phys. Rev. B 2015, 92, 245439.
  • Laycock, T.; Olmos, B.; Montgomery, T.; Li, W.; Fromhold, T.M.; Lesanovsky, I. Control of Atomic Rydberg States Using Guided Electrons. J. Phys. B: Atom. Mol. Opt. Phys. 2013, 46 (24), 245502.
  • Henkel, C.; Pötting, S.; Wilkens, M. Loss and Heating of Particles in Small and Noisy Traps. Appl. Phys. B 1999, 69 (5), 379–387. DOI: 10.1007/s003400050823.
  • Reyes, Contreras A.M.; Eberlein, C. Casimir-polder Interaction between an Atom and a Dielectric Slab. Phys. Rev. A 2009, 80, 032901.
  • Sernelius, B.E. Casimir Effects in Systems Containing 2D Layers such as Graphene and 2D Electron Gases. J. Phys. Condensed Matter. 2015, 27 (21), 214017.
  • Wieck, A.D.; Ploog, K. In-plane-gated Quantum Wire Transistor Fabricated with Directly Written Focused Ion Beams. App. Phys. Lett. 1990, 56 (10), 928–930.
  • Ensslin, K.; Petroff, P.M. Magnetotransport through an Antidot Lattice in GaAs-1-xAs Heterostructures. Phys. Rev. B 1990, 41 (17), 12307.
  • Koonen, J.J.; Buhmann, H.; Molenkamp, L.W. Probing the Potential Landscape Inside a Two-dimensional Electron Gas. Phys. Rev. Lett. 2000, 84 (11), 2473–2476.
  • Schumm, T.; Estéve, J.; Figl, C.; Trebbia, J.B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C.I.; Aspect, A. Atom Chips in the Real World: The Effects of Wire Corrugation. Eur. Phys. J. D 2005, 32, 171–180.
  • McGuirk, J.M.; Harber, D.M.; Obrecht, J.M.; Cornell, E.A. Alkali-metal Adsorbate Polarization on Conducting and Insulating Surfaces Probed with Bose-Einstein Condensates. Phys. Rev. A 2004, 69, 062905. DOI: 10.1103/PhysRevA.69.062905.
  • Obrecht, J.M.; Wild, R.J.; Cornell, E.A. Measuring Electric Fields from Surface Contaminants with Neutral Atoms. Phys. Rev. A 2007, 75, 062903. DOI: 10.1103/PhysRevA.75.062903.
  • Chan, K.S.; Siercke, M.; Hufnagel, C.; Dumke, R. Adsorbate Electric Fields on a Cryogenic Atom Chip. Phys. Rev. Lett. 2014, 112, 026101. DOI: 10.1103/PhysRevLett.112.026101.
  • Ohno, T. Sulfur Passivation of GaAs Surfaces. Phys. Rev. B 1991, 44, 6306–6311. DOI: 10.1103/PhysRevB.44.6306.
  • Fortágh, J.; Zimmermann, C. Magnetic Microtraps for Ultracold Atoms. Rev. Mod. Phys. 2007, 79, 235–289. DOI: 10.1103/RevModPhys.79.235.
  • Sukumar, C.V.; Brink, D.M. Spin-flip Transitions in a Magnetic Trap, emphPhys. Rev. A 1997, 56 (3), 2451–2454.
  • Scheel, S.; Rekdal, P.K.; Knight, P.L.; Hinds, E.A. Atomic Spin Decoherence near Conducting and Superconducting Films. Phys. Rev. A 2005, 72, 042901. DOI: 10.1103/PhysRevA.72.042901.
  • Skagerstam, B.S.K.; Hohenester, U.; Eiguren, A.; Redkal, P.K. Spin Decoherence in Superconducting Atom-chips. Phys. Rev. Lett. 2006, 97, 070401.
  • Leanhardt, A.; Chikkatur, A.; Kielpinski, D.; Shin, Y.; Gustavson, T.; Ketterle, W.; Pritchard, D. Propagation of Bose-Einstein Condensates in a Magnetic Waveguide. Physical review letters 2002, 89 (4), 040401.
  • MacLeod, S.J.; Chan, K.; Martin, T.P.; Hamilton, A.R.; See, A.; Micolich, A.P.; Aagesen, M.; Lindelof, P.E. Role of Background Impurities in the Single-particle Relaxation Time of a Two-dimensional Electron Gas. Phys. Rev. B 2009, 80, 035310.
  • Reichel, J. Microchip Traps and Bose-Einstein Condensation. App. Phys. B 2002, 74, 469–487.
  • Sinuco-León, G. Quantum Properties of Bose-Einstein Condensates Coupled to Semiconductor Heterojunctions; Ph.D. Thesis. University of Nottingham, September 2010.
  • Drummond, T.J.; Kopp, W.; Morkoc, H.; Keever, M. Transport in Modulation-doped Structures AlxGa1-xAs/GaAs and Correlations with Monte Carlo Calculations. Appl. Phys. Lett. 1982, 41, 277–279.
  • Thywissen, J.H.; Olshanii, M.; Zabow, G.; Drndić, M.; Johnson, K.S.; Westervelt, R.M.; Prentiss, M. Microfabricated Magnetic Waveguides for Neutral Atoms. Eur. Phys. J. D 1999, 7 (3), 361–367.
  • Günther, A.; Kemmler, M.; Kraft, S.; Vale, C.J.; Zimmermann, C.; Fortágh, J. Combined Chips for Atom Optics. Phys. Rev. A 2005, 71 (6), 063619.
  • Roux, C.; Emmert, A.; Lupascu, A.; Nirrengarten, T.; Nogues, G.; Brune, M.; Raimond, J.; Haroche, S. Bose-Einstein Condensation on a Superconducting Atom Chip. Eur. Phys. Lett. 2008, 81, 56004.
  • Mukai, T.; Hufnagel, C.; Kasper, A.; Meno, T.; Tsukada, A.; Semba, K.; Shimizu, F. Persistent Supercurrent Atom Chip. Phys. Rev. Lett. 2007, 98 (26), 260407.
  • Weiss, P.; Knufinke, M.; Bernon, S.; Bothner, D.; Sárkány, L.; Zimmermann, C.; Kleiner, R.; Koelle, D.; Fortágh, J.; Hattermann, H. Sensitivity of Ultracold Atoms to Quantized Flux in a Superconducting Ring. Phys. Rev. Lett. 2015, 114, 113003.
  • Horsley, A.; Du, G.X.; Treutlein, P. Widefield Microwave Imaging in Alkali Vapor Cells with sub-100 m Resolution. New J. Phys. 2015, 17 (11), 112002. http://stacks.iop.org/1367-2630/17/i=11/a=112002
  • Böhi, P.; Riedel, M.F.; Hänsch, T.W.; Treutlein, P. Imaging of Microwave Fields Using Ultracold Atoms, App. Phys. Lett. 2010, 97 (5), 051101.
  • Umansky, V.; Heiblum, M.; Levinson, Y.; Smet, J.; Nübler, J.; Dolev, M. MBE Growth of Ultra-low Disorder 2DEG with Mobility Exceeding 35 X 106 cm2/Vs. J. Crystal Growth 2009, 311, 1658.
  • Topinka, M.A.; LeRoy, B.J.; Westervelt, R.M.; Shaw, S.E.J.; Fleischmann, R.; Heller, E.J.; Maranowski, K.D.; Gossard, A.C. Coherent Branched Flow in a Two-dimensional Electron Gas. Nature 2001, 410, 183–186.
  • Buks, E.; Heiblum, M.; Shtrikman, H. Correlated Charged Donors and Strong Mobility Enhancement in a Two-dimensional Electron Gas. Phys. Rev. B 1994, 49 (20), 14790.
  • Coleridge, P.T. Correlation Lengths for Scattering Potentials in Two-dimensional Electron Gases. Semicond. Sci. Technol. 1997, 12, 22–28.
  • Grill, R.; Döhler, G.H. Effect of Charged Donor Correlation and Wigner Liquid Formation on the Transport Properties of a Two-dimensional Electron Gas in Modulation δ-doped Heterojunctions. Phys. Rev. B 1999, 59, 10769.
  • Rodgers, J.L.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Statistician 1988, 42 (1), 59–66.
  • Siegert, C.; Ghosh, A.; Pepper, M.; Farrer, I.; Ritchie, D.A. The Possibility of an Intrinsic Spin Lattice in High-mobility Semiconductor Heterostructures. Nat. Phys. 2007, 3 (5), 315–318.
  • Haakh, H.R.; Henkel, C. Magnetic near Fields as a Probe of Charge Transport in Spatially Dispersive Conductors. Eur. Phys. J. B 2012, 85 (1), 46–57. DOI: 10.1140/epjb/e2011-20567-1.
  • Buks, E.; Heiblum, M.; Levinson, Y.; Shtrikman, H. Scattering of a Two-dimensional Electron Gas by a Correlated System of Ionized Donors. Semicon. Sci. Technol. 1994, 9, 2031.
  • Palm, T. Effects of Remote Impurity Scattering Including Donor Correlations in a Branching Electron Waveguide. Phys. Rev. B 1995, 52, 11284.
  • Hinds, E.A.; Hughes, I.G. Magnetic Atom Optics: Mirrors, Guides, Traps, and Chips for Atoms. J. Phys. D: Appl. Phys. 1999, 32 (18), R119.