1,124
Views
25
CrossRef citations to date
0
Altmetric
Laser Spectroscopy of Trapped Ions

Single-ion, transportable optical atomic clocks

&
Pages 622-639 | Received 29 Jun 2017, Accepted 01 Feb 2018, Published online: 07 Mar 2018

References

  • Chou, C.W.; Hume, D.B.; Koelemeij, J.C.J.; Wineland, D.J.; Rosenband, T. Frequency Comparison of Two High-accuracy Al Optical Clocks. Phys. Rev. Lett. 2010, 104, 070802.
  • Huntemann, N.; Sanner, C.; Lipphardt, B.; Tamm, C.; Peik, E. Single-ion Atomic Clock with Systematic Uncertainty. Phys. Rev. Lett 2016, 116. 063001.
  • Schioppo, M.; Brown, R.C.; McGrew, W.F.; Hinkley, N.; Fasano, R.J.; Beloy, K.; Yoon, T.H.; Milani, G.; Nicolodi, D.; Sherman, J.A.; Phillips, N.B.; Oates, C.W.; Ludlow, A.D. Ultrastable Optical Clock with Two Cold-atom Ensembles. Nat. Photonics 2016, 11, 48–52.
  • Nicholson, T.; Campbell, S.; Hutson, R.; Marti, G.; Bloom, B.; McNally, R.; Zhang, W.; Barrett, M.; Safronova, M.; Strouse, G.; Tew W.L.; Ye J. Systematic Evaluation of an Atomic Clock at Total Uncertainty. Nat. Commun. 2015, 6, 6896.
  • Poli, N.; Schioppo, M.; Vogt, S.; Falke, S.; Sterr, U.; Lisdat, C.; Tino, G.M. A Transportable Strontium Optical Lattice Clock. Appl. Phys. B 2014, 117, 1107–1116.
  • Koller, S.B.; Grotti, J.; Vogt, S.; Al-Masoudi, A.; D\"{o}rscher, S.; H{\"a}fner, S.; Sterr, U.; Lisdat, C. Transportable Optical Lattice Clock with Uncertainty. Phys. Rev. Lett. 2017, 118. 073601.
  • Cao, J.; Zhang, P.; Shang, J.; Cui, K.; Yuan, J.; Chao, S.; Wang, S.; Shu, H.; Huang, X. A, Compact, Transportable Single-ion Optical Clock with Systematic Uncertainty. Appl. Phys. B 2017, 123, 112.
  • Quessada, A.; Kovacich, R.P.; Courtillot, I.; Clairon, A.; Santarelli, G.; Lemonde, P. The Dick Effect for an Optical Frequency Standard. J. Opt. B: Quantum Semiclassical Opt. 2003, 5, S150–S154.
  • Margolis, H.S. Optical Frequency Standards and Clocks. Contemp. Phys. 2010, 51, 37–58.
  • Poli, N.; Oates, C.W.; Gill, P.; Tino, G.M. Optical Atomic Clocks. Rivista Del Nuovo Cimento 2013, 36, 555–624.
  • Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P. Optical Atomic Clocks. Rev. Mod. Phys. 2015, 87, 637–701.
  • Hong, F.L. Optical Frequency Standards for Time and Length Applications. Meas. Sci. Technol. 2017, 28, 012002.
  • Nand, N.R.; Hartnett, J.G.; Ivanov, E.N.; Santarelli, G. Ultra-stable Very-low Phase-noise Signal Source for Very Long Baseline Interferometry Using a Cryocooled Sapphire Oscillator. IEEE Trans. Microwave Theory Tech. 2011, 59, 2978–2986.
  • Clivati, C.; Costanzo, G.A.; Frittelli, M.; Levi, F.; Mura, A.; Zucco, M.; Ambrosini, R.; Bortolotti, C.; Perini, F.; Roma, M.; Calonico, D. A Coherent Fiber Link for Very Long Baseline Interferometry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1907–1912.
  • Przemysław, K.; Waldemar, A.; Artur, B.; Wojbor, B.; {\L}ukasz, B.; Bob, C.; Roman, C.; Piotr, D.; Jacek, K.; Dariusz, L.; Marcin, L.; Andrzej, M.; Jerzy, N.; Pawe{\l}, N.; Tadeusz, P.; Eugeniusz, P.; Janusz, P.; Maciej, S.; {\L}ukasz, \’S.; Krzysztof, T.; Micha{\l}, Z. Remote Atomic Clock Delivery to the VLBI Station in Toruń, Proceedings of the 2016 European Frequency and Time Forum (EFTF), Apr. 2016; pp. 1–3.
  • Clivati, C.; Ambrosini, R.; Artz, T.; Bertarini, A.; Bortolotti, C.; Frittelli, M.; Levi, F.; Mura, A.; Maccaferri, G.; Nanni, M.; et al. A VLBI Experiment Using a Remote Atomic Clock via a Coherent Fibre Link. Sci. Rep. 2017, 7. 40992.
  • Gill, P. Is the Time Right for a Redefinition of the Second by Optical Atomic Clocks? J. Phys.: Conf. Ser. 2016, 723, 012053.
  • Mills, I.M.; Mohr, P.J.; Quinn, T.J.; Taylor, B.N.; Williams, E.R. Redefinition of the Kilogram, Ampere, Kelvin and Mole: A Proposed Approach to Implementing CIPM Recommendation 1 (CI-2005). Metrologia 2006, 43, 227–246.
  • Leute, J.; Huntemann, N.; Lipphardt, B.; Tamm, C.; Nisbet-Jones, P.B.R.; King, S.A.; Godun, R.M.; Jones, J.M.; Margolis, H.S.; Whibberley, P.B.; Wallin, A.; Gill, P.; Peik, E. Frequency Comparison of Ion Optical Clocks at PTB and NPL via GPS PPP. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 981–985.
  • Exertier, P.; Samain, E.; Bonnefond, P.; Guillemot, P. Status of the T2L2/Jason2 Experiment. Adv. Space Res. 2010, 46, 1559–1565.
  • Fujieda, M.; Piester, D.; Gotoh, T.; Becker, J.; Aida, M.; Bauch, A. Carrier-phase Two-way Satellite Frequency Transfer over a Very Long Baseline. Metrologia 2014, 51, 253–262.
  • Musha, M.; Hong, F.L.; Nakagawa, K.; Ichi Ueda, K. Coherent Optical Frequency Transfer over 50-km Physical Distance Using a 120-km-long Installed Telecom Fiber Network. Opt. Express 2008, 16, 16459–16466.
  • Predehl, K.; Grosche, G.; Raupach, S.M.F.; Droste, S.; Terra, O.; Alnis, J.; Legero, T.; Hänsch, T.W.; Udem, T.; Holzwarth, R.; Schnatz, H. A 920-kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science 2012, 336, 441–444.
  • Droste, S.; Ozimek, F.; Udem, T.; Predehl, K.; Hänsch, T.W.; Schnatz, H.; Grosche, G.; Holzwarth, R. Optical-frequency Transfer Over a Single-span 1840 km Fiber Link. Phys. Rev. Lett. 2013, 111, 110801.
  • \’{S}liwczyński, L.; Krehlik, P.; Czubla, A.; Buczek, L.; Lipiński, M. Dissemination of Time and RF Frequency via a Stabilized Fibre Optic Link over a Distance of 420 km. Metrologia 2013, 50, 133–145.
  • Chiodo, N.; Quintin, N.; Stefani, F.; Wiotte, F.; Camisard, E.; Chardonnet, C.; Santarelli, G.; Amy-Klein, A.; Pottie, P.E.; Lopez, O. Cascaded Optical Fiber Link Using the Internet Network for Remote Clocks Comparison. Opt. Express 2015, 23, 33927–33937.
  • Riehle, F. Optical Clock Networks. Nat. Photonics 2017, 11, 25–31.
  • Vermeer, M. Chronometric Levelling; Reports of the Finnish Geodetic Institute, 83:2; Geodeettinen Laitos, Geodetiska Institutet, Helsinki, 1983.
  • Bjerhammar, A. On a Relativistic Geodesy. Bull. Géodésique 1985, 59, 207–220.
  • Delva, P.; Lodewyck, J. Atomic Clocks: New Prospects in Metrology and Geodesy. ArXiv e-prints 2013. ArXiv:1308.6766.
  • Flury, J. Relativistic Geodesy. J. Phys.: Conf. Ser. 2016, 723, 012051.
  • Lisdat, C.; Grosche, G.; Quintin, N.; Shi, C.; Raupach, S.M.F.; Grebing, C.; Nicolodi, D.; Stefani, F.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Robyr, J.-L.; Chiodo, N.; Bilicki, S.; Bookjans, E.; Koczwara, A.; Koke, S.; Kuhl, A.; Wiotte, F.; Meynadier, F.; Camisard, E.; Abgrall, M.; Lours, M.; Lours, M.; Legero, T.; Schnatz, H.; Sterr, U.; Denker, H.; Chardonnet, M.; Coq, Y.Le; Santarelli, G.; Amy-Klein, A.; Targat, R.Le; Lodewyck, A.; Lopez, O.; Pottie, P.-E. A Clock Network for Geodesy and Fundamental Science. Nat. Commun. 2016, 7, 12443.
  • Takano, T.; Takamoto, M.; Ushijima, I.; Ohmae, N.; Akatsuka, T.; Yamaguchi, A.; Kuroishi, Y.; Munekane, H.; Miyahara, B.; Katori, H. Geopotential Measurements with Synchronously Linked Optical Lattice Clocks. Nat. Photonics 2016, 10, 662–666.
  • Nemitz, N.; Ohkubo, T.; Takamoto, M.; Ushijima, I.; Das, M.; Ohmae, N.; Katori, H. Frequency Ratio of Yb and Sr clocks with Uncertainty at Seconds Averaging Time. Nat. Photonics 2016, 10, 258–261.
  • Lion, G.; Panet, I.; Wolf, P.; Guerlin, C.; Bize, S.; Delva, P. Determination of a High Spatial Resolution Geopotential Model Using Atomic Clock Comparisons. J. Geodesy 2017, 91, 597–611.
  • Grotti, J.; Koller, S.; Vogt, S.; Häfner, S.; Sterr, U.; Lisdat, C.; Denker, H.Voigt, C.Timmen, L.Rolland, A.; Baynes F.N.; Margolis H.S.; Zampaolo M.; Thoumany P.; Pizzocaro M.; Rauf B.; Bregolin F.; Tampellini A.; Barbieri P.; Zucco M.; Costanzo G.A.; Clivati C.; Levi F.; Calonico D. Geodesy and Metrology with a Transportable Optical Clock. ArXiv e-prints 2017, Arxiv:1705.04089.
  • Safronova, M.; Budker, D.; DeMille, D.; Kimball, D.F.J.; Derevianko, A.; Clark, C.W. Search for New Physics with Atoms and Molecules. ArXiv e-prints 2017. ArXiv:1710.01833.
  • Derevianko, A.; Pospelov, M. Hunting for Topological Dark Matter with Atomic Clocks. Nat. Phys. 2014, 10, 933–936.
  • Derevianko, A. Atomic Clocks and Dark-matter Signatures. J. Phys.: Conf. Ser. 2016, 723, 012043.
  • Damour, T.; Piazza, F.; Veneziano, G. Runaway Dilaton and Equivalence Principle Violations. Phys. Rev. Lett. 2002, 89, 081601.
  • Uzan, J.P. The Fundamental Constants and Their Variation: Observational and Theoretical Status. Rev. Mod. Phys. 2003, 75, 403–455.
  • Godun, R.; Nisbet-Jones, P.; Jones, J.; King, S.; Johnson, L.; Margolis, H.; Szymaniec, K.; Lea, S.; Bongs, K.; Gill, P. Frequency Ratio of Two Optical Clock Transitions in Yb and Constraints on the Time Variation of Fundamental Constants. Phys. Rev. Lett. 2014, 113, 210801.
  • Dzuba, V.A.; Flambaum, V.V.; Safronova, M.S.; Porsev, S.G.; Pruttivarasin, T.; Hohensee, M.A.; Häffner, H. Strongly Enhanced Effects of Lorentz Symmetry Violation in Entangled Yb Ions. Nat. Phys. 2016, 12, 465–468.
  • Huntemann, N.; Lipphardt, B.; Tamm, C.; Gerginov, V.; Weyers, S.; Peik, E. Improved Limit on a Temporal Variation of from Comparisons of and Cs Atomic Clocks. Phys. Rev. Lett. 2014, 113, 210802.
  • Laurent, P.; Massonnet, D.; Cacciapuoti, L.; Salomon, C. The ACES/PHARAO Space Mission. C. R. Phys. 2015, 16, 540–552.
  • http://www.soc2.eu.
  • Bongs, K.; Singh, Y.; Smith, L.; He, W.; Kock, O.; \’{S}wierad, D.Hughes, J.Schiller, S.Alighanbari, S.; Origlia, S.; Vogt S.; Sterr U.; Lisdat C.; Targat R.L.; Lodewyck J.; Holleville D.; Venon B.; Bize S.; Barwood G.P.; Gill P.; Hill I.R.; Ovchinnikov Y.B.; Poli N.; Tino G.M.; Stuhler J.; Kaenders W. Development of a Strontium Optical Lattice Clock for the SOC Mission on the ISS. C. R. Phys. 2015, 16, 553–564. The measurement of time/La mesure du temps.
  • Origlia, S.; Schiller, S.; Smith, L.; Pramod, M.S.; Singh, Y.; He, W.Viswam, S.\’{S}wierad, D. Hughes, J.; Bongs, K.; Sterr, U.; Lisdat C.H.; Vogt S.; Bize S.; Lodewyck J.; Targat R.L.; Holleville D.; Venon B. Development of a Strontium Optical Lattice Clock for the SOC Mission on the ISS. Proc. SPIE 2016, 9900, 9900–9900-12.
  • Pizzocaro, M.; Thoumany, P.; Rauf, B.; Bregolin, F.; Milani, G.; Clivati, C.; Costanzo, G.A.; Levi, F.; Calonico, D. Absolute Frequency Measurement of the Transition of Yb. Metrologia 2017, 54, 102–112.
  • Dehmelt, H. Proposed laser fluorescence spectroscopy on mono-ion oscillator.. Bull. Amer. Phys. Soc. 1975, 20.
  • Dehmelt, H.; Yu, N.; Nagourney, W. The Transition in Thallium Isotope Ion : A Superior Atomic Clock. Proc. Nat. Acad. Sci. USA 1989, 89, 3938.
  • Yu, N.; Dehmelt, H.; Nagourney, W. The Transition in the Aluminum Isotope Ion : A Potentially Superior Passive Laser Frequency Standard and Spectrum Analyzer. Proc. Nat. Acad. Sci. USA 1992, 89, 7289.
  • Bell, A.S.; Gill, P.; Klein, H.A.; Levick, A.P.; Tamm, C.; Schnier, D. Laser Cooling of Trapped Ytterbium Ions Using a Four-level Optical-excitation Scheme. Phys. Rev. A 1991, 44, R20–R23.
  • Cundiff, S.T. Colloquium: Femtosecond Optical Frequency Combs. Rev. Mod. Phys. 2003, 75, 325–342.
  • Hänsch, T.W. Nobel Lecture: Passion for Precision. Rev. Mod. Phys. 2006, 78, 1297–1309.
  • Huang, Y.; Guan, H.; Liu, P.; Bian, W.; Ma, L.; Liang, K.; Li, T.; Gao, K. Frequency Comparison of Two Ca Optical Clocks with an Uncertainty at the Level. Phys. Rev. Lett. 2016, 116, 013001.
  • Rosenband, T.; Hume, D.B.; Schmidt, P.O.; Chou, C.W.; Brusch, A.; Lorini, L.; Oskay, W.H.; Drullinger, R.E.; Fortier, T.M.; Stalnaker, J.E.; Diddams S A.; Swann W.C.; Newbury N.R; Itano W.M.; Wineland D.J.; Bergquist J.C. Frequency Ratio of Al and Hg Single-ion Optical Clocks; Metrology at the 17th Decimal Place. Science 2008, 319, 1808–1812.
  • Dubé, P.; Madej, A.A.; Tibbo, M.; Bernard, J.E. High-accuracy Measurement of the Differential Scalar Polarizability of a Sr Clock Using the Time-dilation Effect. Phys. Rev. Lett. 2014, 112, 173002.
  • Tamm, C.; Huntemann, N.; Lipphardt, B.; Gerginov, V.; Nemitz, N.; Kazda, M.; Weyers, S.; Peik, E. Cs-based Optical Frequency Measurement Using Cross-linked Optical and Microwave Oscillators. Phys. Rev. A 2014, 89, 023820.
  • Pyka, K.; Herschbach, N.; Keller, J.; Mehlstäubler, T.E. A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock. Appl. Phys. B 2013, 114, 1–11.
  • Peik, E.; Tamm, C. Nuclear Laser Spectroscopy of the 3.5 eV Transition in Th-229. Europhys. Lett. 2003, 61, 181–186.
  • Arnold, K.; Hajiyev, E.; Paez, E.; Lee, C.H.; Barrett, M.D.; Bollinger, J. Prospects for Atomic Clocks Based on Large Ion Crystals. Phys. Rev. A 2015, 92, 032108.
  • Le Targat, R.; Lorini, L.; Le Coq, Y.; Zawada, M.; Gu\’{e}na, J.; Abgrall, M.; Gurov, M.Rosenbusch, P.; Rovera, D.G.; Nag{\’o}rny, B.; Gartman R.; Westergaard P.G.; Tobar M.E.; Lours M.; Santarelli G.; Clairon A.; Bize S.; Laurent P. ;Lemonde P.; Lodewyck J. Experimental Realization of an Optical Second with Strontium Lattice Clocks. Nat. Commun. 2013, 4, 2109.
  • Grebing, C.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Gerginov, V.; Weyers, S.; Lipphardt, B.; Riehle, F.; Sterr, U.; Lisdat, C. Realization of a Timescale with an Accurate Optical Lattice Clock. Optica 2016, 3, 563–569.
  • Champenois, C.; Houssin, M.; Lisowski, C.; Knoop, M.; Hagel, G.; Vedel, M.; Vedel, F. Evaluation of the Ultimate Performances of a Ca Single-ion Frequency Standard. Phys. Lett. A 2004, 331, 298–311.
  • Itano, W.M.; Bergquist, J.C.; Bollinger, J.J.; Gilligan, J.M.; Heinzen, D.J.; Moore, F.L.; Raizen, M.G.; Wineland, D.J. Quantum Projection Noise: Population Fluctuations in Two-level Systems. Phys. Rev. A 1993, 47, 3554–3570.
  • Dicke, R.H. The Effect of Collisions upon the Doppler Width of Spectral Lines. Phys. Rev. 1953, 89, 472–473.
  • Chen, J.S.; Brewer, S.M.; Chou, C.W.; Wineland, D.J.; Leibrandt, D.R.; Hume, D.B. Sympathetic Ground State Cooling and Time-dilation Shifts in an Al Optical Clock. Phys. Rev. Lett. 2017, 118. 053002.
  • Berkeland, D.J.; Miller, J.D.; Bergquist, J.C.; Itano, W.M.; Wineland, D.J. Minimization of Ion Micromotion in a Paul Trap. J. Appl. Phys. 1998, 83, 5025–5033.
  • Keller, J.; Burgermeister, T.; Kalincev, D.; Kiethe, J.; Mehlstäubler, T.E. Evaluation of Trap-induced Systematic Frequency Shifts for a Multi-ion Optical Clock at the Level. J. Phys.: Conf. Ser. 2016, 723, 012027.
  • Itano, W.M. External-field Shifts of the Hg Optical Frequency Standard. J. Res. Nat. Inst. Stand. Technol. 2000, 105, 829–837.
  • Dubé, P.; Madej, A.A.; Bernard, J.E.; Marmet, L.; Boulanger, J.S.; Cundy, S. Electric Quadrupole Shift Cancellation in Single-ion Optical Frequency Standards. Phys. Rev. Lett. 2005, 95, 033001.
  • Dolezal, M.; Balling, P.; Nisbet-Jones, P.B.R.; King, S.A.; Jones, J.M.; Klein, H.A.; Gill, P.; Lindvall, T.; Wallin, A.E.; Merimaa, M.; Tamm C.; Sanner C.; Huntemann N.; Scharnhorst N.; Leroux I.D.; Schmidt P.O.; Burgermeister T.; Mehlstäubler T.E.; Peik E. Analysis of Thermal Radiation in Ion Traps for Optical Frequency Standards. Metrologia 2015, 52, 842–856.
  • Zanon-Willette, T. Probe Light-shift Elimination in Generalized Hyper-Ramsey Quantum Clocks. Phys. Rev. A 2016, 93, 042506.
  • Bernard, J.; Marmet, L.; Madej, A. A Laser Frequency Lock Referenced to a Single Trapped Ion. Opt. Commun. 1998, 150, 170–174.
  • Black, E.D. An Introduction to Pound-Drever-Hall Laser Frequency Stabilization. Amer. J. Phys. 2001, 69, 79–87.
  • Numata, K.; Kemery, A.; Camp, J. Thermal-noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities. Phys. Rev. Lett. 2004, 93, 250602.
  • Kessler, T.; Legero, T.; Sterr, U. Thermal Noise in Optical Cavities Revisited. J. Opt. Soc. Amer. B 2012, 29, 178–184.
  • Cole, G.D.; Zhang, W.; Martin, M.J.; Ye, J.; Aspelmeyer, M. Tenfold Reduction of Brownian Noise in High-reflectivity Optical Coatings. Nat. Photonics 2013, 7, 644–650.
  • Kessler, T.; Hagemann, C.; Grebing, C.; Legero, T.; Sterr, U.; Riehle, F.; Martin, M.J.; Chen, L.; Ye, J. A Sub-40-mHz-linewidth Laser Based on a Silicon Single-crystal Optical Cavity. Nat. Photonics 2012, 6, 687–692.
  • Chen, L.; Hall, J.L.; Ye, J.; Yang, T.; Zang, E.; Li, T. Vibration-induced Elastic Deformation of Fabry-Perot Cavities. Phys. Rev. A 2006, 74, 053801.
  • Millo, J.; Magalhães, D.V.; Mandache, C.; Le Coq, Y.; English, E.M.L.; Westergaard, P.G.; Lodewyck, J.; Bize, S.; Lemonde, P.; Santarelli, G. Ultrastable Lasers Based on Vibration Insensitive Cavities. Phys. Rev. A 2009, 79, 053829.
  • Häfner, S.; Falke, S.; Grebing, C.; Vogt, S.; Legero, T.; Merimaa, M.; Lisdat, C.; Sterr, U. Fractional Laser Frequency Instability with a Long Room-temperature Cavity. Opt. Lett. 2015, 40, 2112–2115.
  • Matei, D.G.; Legero, T.; Häfner, S.; Grebing, C.; Zhang, W.; Sonderhouse, L.; Robinson, J.M.; Ye, J.; Riehle, F.; Sterr U. 1.5 m Lasers with Sub 10 mHz Linewidth, ArXiv e-prints 2017. ArXiv:1702.04669v4.
  • Webster, S.; Gill, P. Force-insensitive Optical Cavity. Opt. Lett. 2011, 36, 3572–3574.
  • Davila-Rodriguez, J.; Baynes, F.N.; Ludlow, A.D.; Fortier, T.M.; Leopardi, H.; Diddams, S.A.; Quinlan, F. Compact, Thermal-noise-limited Reference Cavity for Ultra-low-noise Microwave Generation. Opt. Lett. 2017, 42, 1277–1280.
  • Leibrandt, D.R.; Thorpe, M.J.; Notcutt, M.; Drullinger, R.E.; Rosenband, T.; Bergquist, J.C. Spherical Reference Cavities for Frequency Stabilization of Lasers in Non-laboratory Environments. Opt. Express 2011, 19, 3471–3482.
  • Didier, A.; Millo, J.; Lacroûte, C.; Ouisse, M.; Delporte, J. Vincent Giordano; Rubiola, E.; Kersalé, Y. Design of an Ultra-compact Reference ULE Cavity. J. Phys.: Conf. Ser. 2016, 723 (1), 012029.
  • Leibrandt, D.R.; Thorpe, M.J.; Bergquist, J.C.; Rosenband, T. Field-test of a Robust, Portable, Frequency-stable Laser. Opt. Express 2011, 19, 10278–10286.
  • Leibrandt, D.R.; Bergquist, J.C.; Rosenband, T. Cavity-stabilized Laser with Acceleration Sensitivity Below g. Phys. Rev. A 2013, 87, 023829.
  • Didier, A.; Millo, J.; Grop, S.; Dubois, B.; Bigler, E.; Rubiola, E.; Lacroûte, C.; Kersalé, Y. Ultra-low Phase Noise All-optical Microwave Generation Setup Based on Commercial Devices. Appl. Opt. 2015, 54, 3682–3686.
  • Legero, T.; Kessler, T.; Sterr, U. Tuning the Thermal Expansion Properties of Optical Reference Cavities with Fused Silica Mirrors. J. Opt. Soc. Amer. B 2010, 27, 914–919.
  • Didier, A.; Millo, J.; Maréchal, B.; Rocher, C.; Lacro{\^u}te, C.; Ouisse, M.; Rubiola, E.; Kersal\’{e}, Y. Compact Ultra-stable Laser, Proceedings of the 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium, Besançon, France, 2017; pp. 775–776.
  • Vogt, S.; Lisdat, C.; Legero, T.; Sterr, U.; Ernsting, I.; Nevsky, A.; Schiller, S. Demonstration of a Transportable 1 Hz-linewidth Laser. Appl. Phys. B 2011, 104, 741–745.
  • Chen, Q.F.; Nevsky, A.; Cardace, M.; Schiller, S.; Legero, T.; Häfner, S.; Uhde, A.; Sterr, U. A Compact, Robust, and Transportable Ultra-stable Laser with a Fractional Frequency Instability of . Rev. Sci. Instrum. 2014, 85, 113107.
  • Parker, B.; Marra, G.; Johnson, L.A.M.; Margolis, H.S.; Webster, S.A.; Wright, L.; Lea, S.N.; Gill, P.; Bayvel, P. Transportable Cavity-stabilized Laser System for Optical Carrier Frequency Transmission Experiments. Appl. Opt. 2014, 53, 8157–8166.
  • \’{S}wierad, D.; Häfner, S.; Vogt, S.; Venon, B.; Holleville, D.; Bize, S.; Kulosa, A.; Bode, S.; Singh, Y.; Bongs, K.; Kai ; Rasel ; Maria E.; Jérôme L.; Rodolphe Le T.; Christian L.; Uwe S. Ultra-stable Clock Laser System Development towards Space Applications. Sci. Rep. 2016, 6, 33973.
  • Argence, B.; Prevost, E.; Lévèque, T.; Le Goff, R.; Bize, S.; Lemonde, P.; Santarelli, G. Prototype of an Ultra-stable Optical Cavity for Space Applications. Opt. Express 2012, 20, 25409–25420.
  • Paul, W. Electromagnetic Traps for Charged and Neutral Particles. Rev. Mod. Phys. 1990, 62, 531–540.
  • Oskay, W.H. Single-atom Optical Clock with High Accuracy. Phys. Rev. Lett. 2006, 97, 020801.
  • Tamm, C.; Engelke, D.; Bühner, V. Spectroscopy of the Electric-quadrupole Transition in Trapped Yb. Phys. Rev. A 2000, 61, 053405.
  • Schrama, C.A.; Peik, E.; Smith, W.W.; Walther, H. Novel Miniature Ion Traps. Opt. Commun. 1993, 101, 32–36.
  • Barwood, G.P.; Huang, G.; Klein, H.A.; Johnson, L.A.M.; King, S.A.; Margolis, H.S.; Szymaniec, K.; Gill, P. Agreement between Two Optical Clocks to 4 Parts in 10. Phys. Rev. A 2014, 89, 050501.
  • Schmidt, P.O.; Rosenband, T.; Langer, C.; Itano, W.M.; Bergquist, J.C.; Wineland, D.J. Spectroscopy Using Quantum Logic. Science 2005, 309, 749–752.
  • Chiaverini, J.; Blakestad, R.B.; Britton, J.; Jost, J.D.; Langer, C.; Leibfried, D.; Ozeri, R.; Wineland, D.J. Surface-electrode Architecture for Ion-trap Quantum Information Processing. Quantum Inform. Comput. 2005, 5, 419–439.
  • Seidelin, S.; Chiaverini, J.; Reichle, R.; Bollinger, J.J.; Leibfried, D.; Britton, J.; Wesenberg, J.H.; Blakestad, R.B.; Epstein, R.J.; Hume, D.B.; Itano W.M.; Jost J.D.; Langer C.; Ozeri R.; Shiga N.; Wineland D.J. Microfabricated Surface-electrode Ion Trap for Scalable Quantum Information Processing. Phys. Rev. Lett. 2006, 96, 253003.
  • House, M.G. Analytic Model for Electrostatic Fields in Surface-electrode Ion Traps. Phys. Rev. A 2008, 78, 033402.
  • Wesenberg, J.H. Electrostatics of Surface-electrode Ion Traps. Phys. Rev. A 2008, 78, 063410.
  • Turchette, Q.A.; Kielpinski, D.; King, B.E.; Leibfried, D.; Meekhof, D.M.; Myatt, C.J.Rowe, M.A.Sackett, C.A.Wood, C.S.Itano, W.M.; Monroe C.; Wineland D.J. Heating of Trapped Ions from the Quantum Ground State. Phys. Rev. A 2000, 61, 063418.
  • Brownnutt, M.; Kumph, M.; Rabl, P.; Blatt, R. Ion-trap Measurements of Electric-field Noise Near Surfaces. Rev. Mod. Phys. 2015, 87, 1419–1482.
  • Hite, D.A.; Colombe, Y.; Wilson, A.C.; Brown, K.R.; Warring, U.; Jördens, R.; Jost, J.D.; McKay, K.S.; Pappas, D.P.; Leibfried, D.; Wineland D.J. 100-fold Reduction of Electric-field Noise in an Ion Trap Cleaned with In-situ Argon-ion-beam Bombardment. Phys. Rev. Lett. 2012, 109, 103001.
  • McKay, K.S.; Hite, D.A.; Colombe, Y.; Jördens, R.; Wilson, A.C.; Slichter, D.H.Allcock, D.T.C.; Leibfried, D.; Wineland, D.J.Pappas, D.P. Ion-trap Electrode Preparation with Ne Bombardment. ArXiv e-prints 2014, Arxiv:1406.1778.
  • Labaziewicz, J.; Ge, Y.; Antohi, P.; Leibrandt, D.; Brown, K.R.; Chuang, I.L. Suppression of Heating Rates in Cryogenic Surface-electrode Ion Traps. Phys. Rev. Lett. 2008, 100, 013001.
  • Brownnutt, M.; Wilpers, G.; Gill, P.; Thompson, R.C.; Sinclair, A.G. Monolithic Microfabricated Ion Trap Chip Design for Scaleable Quantum Processors. New J. Phys. 2006, 8, 232.
  • Hughes, M.D.; Lekitsch, B.; Broersma, J.A.; Hensinger, W.K. Microfabricated ion Traps. Contemp. Phys. 2011, 52, 505–529.
  • Wilpers, G.; See, P.; Gill, P.; Sinclair, A.G. A Monolithic Array of Three-dimensional Ion Traps Fabricated with Conventional Semiconductor Technology. Nat. Nanotechnol. 2012, 7, 572–576.
  • Wilpers, G.; See, P.; Gill, P.; Sinclair, A.G. A Compact UHV Package for Microfabricated Ion-trap Arrays with Direct Electronic Air-side Access. Appl. Phys. B 2013, 111, 21–28.
  • MIKES | Spectroscopy. http://www.mikes.fi/en/research/spectroscopy.
  • Introduction - Quest. http://www.quantummetrology.de/quest/eqm/research/portable-trapped-ion-optical-frequency-standard/introduction.html.
  • Brewer, S.M.; Chen, J.S.; Leibrandt, D.R.; Chou, C.W.; Wineland, D.J.; Bergquist, J.C.; Rosenband, T. A High-accuracy Mobile Al Optical Clock. 2014 IEEE International Frequency Control Symposium (FCS), Taipei, Taiwan, 2014.
  • Lacroûte, C.; Souidi, M.; Bourgeois, P.Y.; Millo, J.; Saleh, K.; Bigler, E.; Boudot, R.; Giordano, V.; Kersalé, Y. Compact Yb Optical Atomic Clock Project: Design Principle and Current Status. J. Phys.: Conf. Ser. 2016, 723, 012025.
  • Compact Atomic Clock project - Matthias Keller group - University of Sussex. http://itcm-sussex.com/?page_id=333.
  • Leibfried, D. Quantum State Preparation and Control of Single Molecular Ions. New J. Phys. 2012, 14, 023029.
  • Wolf, F.; Wan, Y.; Heip, J.C.; Gebert, F.; Shi, C.; Schmidt, P.O. Non-destructive State Detection for Quantum Logic Spectroscopy of Molecular Ions. Nature 2016, 530, 457–460.
  • Meekhof, D.M. Generation of Nonclassical Motional States of a Trapped Atom. Phys. Rev. Lett. 1996, 76, 1796–1799.
  • Herschbach, N.; Pyka, K.; Keller, J.; Mehlstäubler, T.E. Linear Paul Trap Design for an Optical Clock with Coulomb Crystals. Appl. Phys. B 2012, 107, 891–906.
  • Fordell, T.; Lindvall, T.; Dubé, P.; Madej, A.A.; Wallin, A.E.; Merimaa, M. Broadband, Unpolarized Repumping and Clearout Light Sources for Sr Single-ion Clocks. Opt. Lett. 2015, 40, 1822–1825.
  • Dubé, P.; Madej, A.A.; Zhou, Z.; Bernard, J.E. Evaluation of Systematic Shifts of the Sr Single-ion Optical Frequency Standard at the level. Phys. Rev. A 2013, 87, 023806.
  • Saleh, K.; Millo, J.; Didier, A.; Kersalé, Y.; Lacroûte, C. Frequency Stability of a Wavelength Meter and Applications to Laser Frequency Stabilization. Appl. Opt. 2015, 54, 9446–9449.
  • Delehaye, M.; Millo, J.; Bourgeois, P.Y.; Groult, L.; Boudot, R.; Rubiola, E.; Bigler, E.; Kersalé, Y.; Lacroûte, C. Residual Phase Noise Measurement of Optical Second Harmonic Generation in PPLN Waveguides. IEEE Photonics Technol. Lett. 2017, 29, 1639–1642.
  • Szmuk, R.; Dugrain, V.; Maineult, W.; Reichel, J.; Rosenbusch, P. Stability of a Trapped-atom Clock on a Chip. Phys. Rev. A 2015, 92, 012106.
  • Telle, H.R.; Steinmeyer, G.; Dunlop, A.E.; Stenger, J.; Sutter, D.H.; Keller, U. Carrier-envelope Offset Phase Control: A Novel Concept for Absolute Optical Frequency Measurement and Ultrashort Pulse Generation. Appl. Phys. B 1999, 69, 327–332.
  • Jones, D.J.; Diddams, S.A.; Ranka, J.K.; Stentz, A.; Windeler, R.S.; Hall, J.L.; Cundiff, S.T. Carrier-Envelope Phase Control of Femtosecond Mode-locked Lasers and Direct Optical Frequency Synthesis. Science 2000, 288, 635–639.
  • Nicolodi, D.; Argence, B.; Zhang, W.; Le Targat, R.; Santarelli, G.; Le Coq, Y. Spectral Purity Transfer between Optical Wavelengths at the Level. Nat. Photonics 2014, 8, 219–223.
  • Fortier, T.M.; Kirchner, M.S.; Quinlan, F.; Taylor, J.; Bergquist, J.C.; Rosenband, T.; Lemke, N.; Ludlow, A.; Jiang, Y.; Oates, C.W.; Diddams, S.A. Generation of Ultrastable Microwaves via Optical Frequency Division. Nat. Photonics 2011, 5, 425–429.
  • Riehle, F. Towards a Redefinition of the Second Based on Optical Atomic Clocks. C. R. Phys. 2015, 16, 506–515.
  • Hall, J.L. Nobel Lecture: Defining and Measuring Optical Frequencies. Rev. Mod. Phys. 2006, 78, 1279–1295.
  • Diddams, S.A. The Evolving Optical Frequency Comb. J. Opt. Soc. Am. B 2010, 27, B51–B62.
  • Hall, J.L. Why it Took So Long for the Laser and the Optical Comb to Be Invented: The Unmarked Trail From Concept To Experimental Reality. J. Opt. Soc. Am. B 2017, 34, 338–346.
  • Lezius, M.; Wilken, T.; Deutsch, C.; Giunta, M.; Mandel, O.; Thaller, A.; Schkolnik, V.; Schiemangk, M.; Dinkelaker, A.; Kohfeldt, A.; Andreas W.; Markus K.; Achim P.; Ortwin H.; Hannes D.; Klaus S.; Patrick W.; Kai L.; Thomas H.; H\"{a}nsch, T. W.; Holzwarth R. Space-borne Frequency Comb Metrology. Optica 2016, 3, 1381–1387.
  • Kippenberg, T.J.; Holzwarth, R.; Diddams, S.A. Microresonator-based Optical Frequency Combs. Science 2011, 332, 555–559.
  • Liang, W.; Ilchenko, V.S.; Eliyahu, D.; Savchenkov, A.A.; Matsko, A.B.; Seidel, D.; Maleki, L. Ultralow Noise Miniature External Cavity Semiconductor Laser. Nat. Commun. 2015, 6, 7371.
  • Luvsandamdin, E.; Kürbis, C.; Schiemangk, M.; Sahm, A.; Wicht, A.; Peters, A.; Erbert, G.; Tränkle, G. Micro-integrated Extended Cavity Diode Lasers for Precision Potassium Spectroscopy in Space. Opt. Express 2014, 22, 7790–7798.
  • Rauch, S.; Sacher, J. Compact Bragg Grating Stabilized Ridge Waveguide Laser Module with a Power of 380 mW at 780 nm. IEEE Photonics Technol. Lett. 2015, 27, 1737–1740.
  • Barwood, G.P.; Gill, P.; Huang, G.; Klein, H.A. Automatic Laser Control for a 88 Sr Optical Frequency Standard. Meas. Sci. Technol. 2012, 23, 055201.
  • Burd, S.C.; Allcock, D.T.C.; Leinonen, T.; Penttinen, J.P.; Slichter, D.H.; Srinivas, R.; Wilson, A.C.; Jö, R.; Guina, M.; Leibfried, D.; Wineland, D.J. VECSEL Systems for the Generation and Manipulation of Trapped Magnesium Ions. Optica 2016, 3, 1294–1299.
  • VanDevender, A.P.; Colombe, Y.; Amini, J.; Leibfried, D.; Wineland, D.J. Efficient Fiber Optic Detection of Trapped Ion Fluorescence. Phys. Rev. Lett. 2010, 105, 023001.
  • Takahashi, H.; Wilson, A.; Riley-Watson, A.; Orucevic, F.; Seymour-Smith, N.; Keller, M.; Lange, W. An Integrated Fiber Trap for Single-ion Photonics. New J. Phys. 2013, 15, 053011.
  • Eltony, A.M.; Wang, S.X.; Akselrod, G.M.; Herskind, P.F.; Chuang, I.L. Transparent Ion Trap with Integrated Photodetector. Appl. Phys. Lett. 2013, 102, 054106.
  • Mehta, K.K.; Bruzewicz, C.D.; McConnell, R.; Ram, R.J.; Sage, J.M.; Chiaverini, J. Integrated Optical Addressing of an Ion Qubit. Nat. Nanotechnol. 2016, 11, 1066–1070.
  • Safronova, M.S.; Dzuba, V.A.; Flambaum, V.V.; Safronova, U.I.; Porsev, S.G.; Kozlov, M.G. Highly Charged Ions for Atomic Clocks, Quantum Information, and Search for Variation. Phys. Rev. Lett. 2014, 113, 030801.
  • Prestage, J.; Chung, S.; Lim, L.; Matevosian, A. Compact microwave mercury ion clock for deep-space applications, Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, Geneva, Switzerland, 2007, pp. 1113–1115.
  • Schwindt, P.D.D.; Jau, Y.Y.; Partner, H.; Casias, A.; Wagner, A.R.; Moorman, M.; Manginell, R.P.; Kellogg, J.R.; Prestage, J.D. A Highly Miniaturized Vacuum Package for a Trapped Ion Atomic Clock. Rev. Sci. Instrum. 2016, 87, 053112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.