214
Views
31
CrossRef citations to date
0
Altmetric
Articles

Ultra-High bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation

ORCID Icon, ORCID Icon &
Pages 1005-1016 | Received 06 Jun 2018, Accepted 14 Mar 2019, Published online: 01 Apr 2019

References

  • Wabnitz, S.; Eggleton, B. All-Optical Signal Processing, Data Communication and Storage Applications, Springer International: Cham, 2015.
  • Chen, Y.; Zhang, H.; Liu, F.; Gu, H. An Optimization Framework for Routing on Optical Network-on-Chips (ONoCs) from a Networking Perspective. 2015 IEEE Int. Conf. Signal Process. Commun. Comput. ICSPCC 2015 2015.
  • Feldmann, J.; Stegmaier, M.; Gruhler, N.; Rios, C.; Wright, C.D.; Bhaskharan, H.; Pernice, W.H.P. All-Optical Signal Processing Using Phase-Change Nanophotonics. Int. Conf. Transparent Opt. Networks 2017.
  • Yan, L.S.; Willner, A.E.; Wu, X.; Yi, A.L.; Bogoni, A.; Chen, Z.Y.; Jiang, H.Y. All-Optical Signal Processing for Ultra-High Speed Optical Systems and Networks. J. Light. Technol 2012, 30 (24), 1–1.
  • Touch, J.; Badawy, A.-H.; Sorger, V.J. Optical Computing. Nanophotonics. 2017, 6 (3), 503–505.
  • Abdeldayem, H.; Frazier, D.O. Optical Computing. Commun. ACM 2007, 50 (9), 60.
  • Shehata, M.I.; Mohammed, N.A. Design and Optimization of Novel Two Inputs Optical Logic Gates (NOT, AND, OR and NOR) Based on Single Commercial TW-SOA Operating at 40 Gbit/s. Opt. Quantum Electron 2016, 48 (6), 1–16.
  • Kaur, S.; Kaler, R.-S.; Kamal, T.-S. All-Optical Binary Full Adder Using Logic Operations Based on the Nonlinear Properties of a Semiconductor Optical Amplifier. J. Opt. Soc. Korea 2015, 19 (3), 222–227.
  • Vo, T.D.; Schröder, J.; Pant, R.; Pelusi, M.; Madden, S.; Choi, D.-Y.; Bulla, D.; Luther-Davies, B.; Eggleton, B. Photonic Chip Based All-Optical XOR Gate for Phase-Encoded Signals. Opt. Fiber Commun. Conf. Fiber Opt. Eng. Conf. 2011 2011, OWG2.
  • Zhang, X.; Wang, Y.; Sun, J.; Liu, D.; Huang, D. All-Optical AND Gate at 10 Gbit/s Based on Cascaded Single-Port-Couple SOAs. Opt. Express 2004, 12 (3), 361–366.
  • Ma, S.; Chen, Z.; Sun, H.; Dutta, N.K. High Speed All Optical Logic Gates Based on Quantum Dot Semiconductor Optical Amplifiers. Opt. Express 2010, 18 (7), 6417–6422.
  • Wang, J.; Sun, J.; Sun, Q. Experimental Observation of a 1.5 Microm Band Wavelength Conversion and Logic NOT Gate at 40 Gbit/s Based on Sum-Frequency Generation. Opt. Lett 2006, 31 (11), 1711–1713.
  • Wang, J.; Sun, J.; Sun, Q. Proposal for All-Optical Switchable OR/XOR Logic Gates Using Sum-Frequency Generation. IEEE Photonics Technol. Lett 2007, 19 (8), 541–543.
  • Wang, J.; Sun, J.; Sun, Q.; Wang, D.; Zhang, X.; Huang, D.; Fejer, M.M. PPLN-Based Flexible Optical Logic and Gate. IEEE Photonics Technol. Lett 2008, 20 (3), 211–213.
  • Xiong, M.; Lei, L.; Ding, Y.; Huang, B.; Ou, H.; Peucheret, C.; Zhang, X. All-Optical 10 Gb/s AND Logic Gate in a Silicon Microring Resonator. Opt. Express 2013, 21 (22), 25772–25779.
  • Rakshit, J.K.; Roy, J.N.; Chattopadhyay, T. All-Optical XOR/XNOR Logic Gate Using Micro-Ring Resonators. CODEC 2012 - 5th Int. Conf. Comput. Devices Commun. 2012.
  • Johnson, S.G.; Joannopoulos, J.D. Introduction to Photonic Crystals: Bloch’s Theorem, Band Diagrams, and Gaps (but No Defects). Photonic Cryst. Tutor. 2003, No. February, 1–16.
  • Sakoda, K. Optical Properties of Photonic Crystals, Springer: Berlin, 2013.
  • Joannopoulos, J.; Johnson, S.; Winn, J. Photonic Crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, 2008.
  • Younis, R.M.; Areed, N.F.F.; Obayya, S.S.A. Fully Integrated AND and OR Optical Logic Gates. IEEE Photonics Technol. Lett 2014, 26 (19), 1900–1903.
  • Rani, P.; Kalra, Y.; Sinha, R.K. Realization of and Gate in Y Shaped Photonic Crystal Waveguide. Opt. Commun 2013, 298-299, 227–231.
  • Alipour-Banaeia, H.; Serajmohammadib, S.; Mehdizadehc, F. All-Optical NAND Gate Based on Nonlinear Photonic Crystal Ring Resonators. Opt. - Int. J. Light Electron Opt 2017, 130, 1214–1221.
  • Mehdizadeh, F.; Soroosh, M. Designing of All Optical NOR Gate Based on Photonic Crystal. Indian J. Pure Appl. Phys 2016, 54 (1), 35–39.
  • Zhu, Z.; Ye, W.; Ji, J.; Yuan, X.; Zen, C. High-Contrast Light-by-Light Switching and AND Gate Based on Nonlinear Photonic Crystals. Opt. Express 2006, 14 (5), 1783–1788.
  • Azuma, H. Quantum Computation with Kerr-Nonlinear Photonic Crystals. J. Phys. D. Appl. Phys. 2008, 41 (2), 1–10.
  • Notomi, M.; Tanabe, T.; Shinya, A.; Kuramochi, E.; Taniyama, H.; Mitsugi, S.; Morita, M. Nonlinear and Adiabatic Control of High-Q Photonic Crystal Nanocavities. Opt. Express 2007, 15 (26), 17458.
  • Zhang, Y.; Zhang, Y.; Li, B. Optical Switches and Logic Gates Based on Self-Collimated Beams in Two-Dimensional Photonic Crystals. Opt. Express 2007, 15 (15), 9287.
  • Lee, K.-Y.; Lin, J.-M.; Yang, Y.-C.; Yang, Y.-B.; Wu, J.-S.; Lin, Y.-J.; Lee, W.-Y. The Designs of XOR Logic Gates Based on Photonic Crystals. Proc. SPIE 2008, 7135 (245), 71353Y–71353Y–8.
  • Sharifi, H.; Hamidi, S.M.; Navi, K. A New Design Procedure for All-Optical Photonic Crystal Logic Gates and Functions Based on Threshold Logic. Opt. Commun 2016, 370, 231–238.
  • Wang, L.A.; Chang, S.H.; Lin, Y.F. Novel Implementation Method to Realize All-Optical Logic Gates. 1998.
  • Li, Z.; Chen, Z.; Li, B. Optical Pulse Controlled All-Optical Logic Gates in SiGe/Si Multimode Interference. Opt. Express 2005, 13 (3), 1033.
  • Christina, X.S.; Kabilan, A.P. Design of Optical Logic Gates Using Self-Collimated Beams in 2D Photonic Crystal. Photonic Sensors 2012, 2 (2), 173–179.
  • Shaik, E.H.; Rangaswamy, N. Design of Photonic Crystal-Based All-Optical AND Gate Using T-Shaped Waveguide. J. Mod. Opt 2016, 63 (10), 941–949.
  • Ishizaka, Y.; Kawaguchi, Y.; Saitoh, K.; Koshiba, M. Design of Optical XOR, XNOR, NAND, and OR Logic Gates Based on Multi-Mode Interference Waveguides for Binary-Phase-Shift-Keyed Signal. J. Light. Technol 2011, 29 (18), 2836–2846.
  • Liu, W.; Yang, D.; Shen, G.; Tian, H.; Ji, Y. Design of Ultra Compact All-Optical XOR, XNOR, NAND and or Gates Using Photonic Crystal Multi-Mode Interference Waveguides. Opt. Laser Technol 2013, 50, 55–64.
  • Bai, J.; Wang, J.; Jiang, J.; Chen, X.; Li, H.; Qiu, Y.; Qiang, Z. Photonic Not and nor Gates Based on a Single Compact Photonic Crystal Ring Resonator. Appl. Opt 2009, 48 (36), 6923–6927.
  • Robinson, S.; Nakkeeran, R. Performance Evaluation of PCRR Based Add Drop Filter with Different Rod Shapes. J. Microwaves. Optoelectron. Electromagn. Appl 2012, 11 (1), 26–38.
  • Keiser, G. Optical Fiber Communications 2011, xxviii, 654.
  • D’souza, N.M.; Mathew, V. Interference Based Square Lattice Photonic Crystal Logic Gates Working with Different Wavelengths. Opt. Laser Technol 2016, 80, 214–219.
  • Yang, Y.P.; Lin, K.C.; Yang, I.C.; Lee, K.Y.; Lin, Y.J.; Lee, W.Y.; Tsai, Y.T. All-Optical Photonic Crystal and Gate with Multiple Operating Wavelengths. Opt. Commun 2013, 297, 165–168.
  • Ghadrdan, M.; Mansouri-Birjandi, M.A. Concurrent Implementation of All-Optical Half-Adder and AND & XOR Logic Gates Based on Nonlinear Photonic Crystal. Opt. Quantum Electron 2013, 45 (10), 1027–1036.
  • Shaik, E.H.; Rangaswamy, N. Multi-Mode Interference-Based Photonic Crystal Logic Gates with Simple Structure and Improved Contrast Ratio. Photonic Netw. Commun 2017, 34 (1), 140–148.
  • Tripathy, S.K.; Sahu, S.; Mohapatro, C.; Dash, S.P. Implementation of Optical Logic Gates Using Closed Packed 2D-Photonic Crystal Structure. Opt. Commun 2012, 285 (13–14), 3234–3237.
  • Salmanpour, A.; Mohammadnejad, S.; Omran, P.T. All-Optical Photonic Crystal NOT and OR Logic Gates Using Nonlinear Kerr Effect and Ring Resonators. Opt. Quantum Electron 2015, 47 (12), 3689–3703.
  • Mano, M.M. Computer System Architecture. 1992, 1–36.
  • Mano, M. M. Computer Engineering: Hardware Design 1988, 464.
  • Zhang, Y.; Zeng, C.; Li, D.; Gao, G.; Huang, Z.; Yu, J.; Xia, J. High-Quality-Factor Photonic Crystal Ring Resonator. Opt. Lett 2014, 39 (5), 1282.
  • De La Rue, R.M. Photonic Crystal and Photonic Band-Gap Structures for Light Extraction and Emission Control. In Photonic Crystals: Physics and Technology, Springer Milan: Milano, 2008; pp 131–147. doi:10.1007/978-88-470-0844-1_8.
  • Kunz, K.S.; Luebbers, R.J. The Finite Difference Time Domain Method for Electromagnetism. 1993.
  • Leung, K.M.; Liu, Y.F. Photon Band Structures: The Plane-Wave Method. Phys. Rev. B 1990, 41 (14), 10188–10190.
  • Ho, K.M.; Chan, C.T.; Soukoulis, C.M. Existence of a Photonic Gap in Periodic Dielectric Structures. Phys. Rev. Lett 1990, 65 (25), 3152–3155.
  • Shaik, E.H.; Rangaswamy, N. Improved Design of All-Optical Photonic Crystal Logic Gates Using T-Shaped Waveguide. Opt. Quantum Electron 2016, 48 (1), 1–15.
  • Wu, C.J.; Liu, C.P.; Ouyang, Z. Compact and Low-Power Optical Logic NOT Gate Based on Photonic Crystal Waveguides Without Optical Amplifiers and Nonlinear Materials. Appl. Opt 2012, 51 (5), 680.
  • Rycroft, M.J. Computational Electrodynamics, the Finite-Difference Time-Domain Method. J. Atmos. Terr. Phys 1996, 58 (15), 1817–1818.
  • Rani, P.; Kalra, Y.; Sinha, R.K. Design of All Optical Logic Gates in Photonic Crystal Waveguides. Optik (Stuttg) 2015, 126 (9–10), 950–955.
  • Ishizaka, Y.; Kawaguchi, Y.; Saitoh, K.; Koshiba, M. Design of Ultra Compact All-Optical XOR and AND Logic Gates with Low Power Consumption. Opt. Commun 2011, 284 (14), 3528–3533.
  • Shaik, E.H.; Rangaswamy, N. Single Photonic Crystal Structure for Realization of NAND and NOR Logic Functions by Cascading Basic Gates. J. Comput. Electron 2018, 17 (1), 337–348.
  • Mehdizadeh, F.; Soroosh, M.; Alipour-Banaei, H. Proposal for 4-to-2 Optical Encoder Based on Photonic Crystals. IET Optoelectron. 2017, 11 (1), 29–35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.