337
Views
4
CrossRef citations to date
0
Altmetric
Articles

A compact, high gain, spoof surface plasmon polariton sawtooth end-fire antenna

ORCID Icon, , , &
Pages 654-660 | Received 13 Nov 2019, Accepted 17 Apr 2020, Published online: 19 May 2020

References

  • O’Hara JF, Averitt RD, Taylor AJ. Terahertz surface plasmon polariton coupling on metallic grating structures. Opt Express. 2004;12(25):6397–6402.
  • Han Z, Bozhevolnyi SI. Radiation guiding with surface plasmon polaritons. Rep Prog Phys. 2012;76(1):016402.
  • Pendry JB, Martín-Moreno L, Garcia-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science. 2004;305(5685):847–848.
  • Tang WX, Zhang HC, Ma HF, et al. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv Opt Mater. 2019;7(1):1800421 (1 of 22)–1800421 (22 of 22).
  • Cui TJ, Shen X. THz and microwave surface plasmon polaritons on ultrathin corrugated metallic strips. Terahertz Sci Technol. 2013;6(2):147–164.
  • Shen X, Cui TJ, Martin-Cano D, et al. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci U S A. 2013;110(1):40–45.
  • Gao X, Shi J, Shen X, et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl Phys Lett. 2013;102(15):151912-1–151912-4.
  • Jin Zhou Y, Jiang Q, Cui TJ. Bidirectional bending splitter of designer surface plasmons. Appl Phys Lett. 2011;99(11):111904-1–111904-3.
  • Yin JY, Ren J, Zhang HC, et al. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Sci Rep. 2015;5:8165.
  • Xiao B, Kong S, Xiao S. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide. Opt Commun. 2016;374:13–17.
  • Xu J, et al. Low-pass plasmonic filter and its miniaturization based on spoof surface plasmon polaritons. Opt Commun. 2016;372:155–159.
  • Wu B, Zu H-R, Xue B-Y, et al. Flexible wideband power divider with high isolation incorporating spoof surface plasmon polaritons transition with graphene flake. Appl Phys Express. 2019;12(2):022008-1–022008-5.
  • Wu Y, Li M, Yan G, et al. Single-conductor co-planar quasi-symmetry unequal power divider based on spoof surface plasmon polaritons of bow-tie cells. AIP Adv. 2016;6(10):105110-1–105110-8.
  • Wei D, Li J, Yang J, et al. Wide-scanning-angle leaky-wave array antenna based on microstrip SSPPs-TL. IEEE Antennas Wirel Propag Lett. 2018;17(8):1566–1570.
  • Xu JJ, Zhang HC, Zhang Q, et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl Phys Lett. 2015;106(2):021102-1–021102-5.
  • Yin JY, Cui TJ. Frequency-controlled broad-angle beam scanning of patch array fed by spoof surface plasmon polaritons. IEEE Trans Antennas Propag. 2016;64(12):5181–5189.
  • Zhang Q, Zhang Q, Chen Y. Spoof surface plasmon polariton leaky-wave antennas using periodically loaded patches above PEC and AMC ground planes. IEEE Antennas Wirel Propag Lett. 2017;16:3014–3017.
  • Ma HF, et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photon Rev. 2014;8(1):146–151.
  • Kong GS, Ma HF, Cai BG, et al. Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci Rep. 2016;6:29600.
  • Kandwal A, Zhang Q, Tang X-L, et al. Low-profile spoof surface plasmon polaritons traveling-wave antenna for near-endfire radiation. IEEE Antennas Wirel Propag Lett. 2018;17(2):184–187.
  • Tian D, Xu R, Peng G, et al. Low-profile high-efficiency bidirectional endfire antenna based on spoof surface plasmon polaritons. IEEE Antennas Wirel Propag Lett. 2018;17(5):837–840.
  • Yin JY, Bao D, Ren J, et al. Endfire radiations of spoof surface plasmon polaritons. IEEE Antennas Wirel Propag Lett. 2017;16:597–600.
  • Hao Z, Zhang J, Zhao L. A compact leaky-wave antenna using a planar spoof surface plasmon polariton structure. Int J RF Microwave Comput Aided Eng. 2019;29(5):1–7.
  • Liao D, Zhang Y, Wang H. Wide-angle frequency-controlled beam-scanning antenna fed by standing wave based on the cutoff characteristics of spoof surface plasmon polaritons. IEEE Antennas Wirel Propag Lett. 2018;17(7):1238–1241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.