176
Views
3
CrossRef citations to date
0
Altmetric
Articles

Sol–gel auto-combustion synthesis and luminescence properties of RVO4: Ln3+ (R=La, Gd; Ln=Sm, Er, Ho, Yb/Er) microcrystals

, , , , , & show all
Pages 1078-1088 | Received 15 Jun 2020, Accepted 10 Aug 2020, Published online: 31 Aug 2020

References

  • Zhou Y, Yan B. RE2(MO4)3:Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Eu, Sm, Dy) microcrystals: controlled synthesis, microstructure and tunable luminescence. CrystEngComm. 2013;15:5694. doi: 10.1039/c3ce40495a
  • Mahalingam V, Hazra C, Naccache R, et al. Enhancing the color purity of the green upconversion emission from Er3+/Yb3+-doped GdVO4 nanocrystals via tuning of the sensitizer concentration. J Mater Chem C. 2013;1(40):6489–6720. doi: 10.1039/c3tc31328j
  • He F, Yang P, Niu N, et al. Hydrothermal synthesis and luminescent properties of YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) microspheres. J Colloid Interf Sci. 2010;343:71–78. doi: 10.1016/j.jcis.2009.11.025
  • Wang C, Chen X, Xie M, et al. Luminescence spectroscopy and near-infrared to visible upconversion in Er3+ and Yb3+ codoped Sc2O3 nanoparticles. Mater Res Bull. 2017;94:435–441. doi: 10.1016/j.materresbull.2017.06.038
  • Zhou Y, He XH, Yan B. Self-assembled RE2(MO4)3:Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Yb/Er, Yb/Tm) hierarchical microcrystals: hydrothermal synthesis and up-conversion luminescence. Opt Mater. 2014;36:602–607. doi: 10.1016/j.optmat.2013.10.036
  • Huang J, Yang ZW, Yu CY, et al. Tunable and white light emission of a single-phased Ba2Y(BO3)2Cl: Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs. J Phys Chem C. 2017;121 :5267–5276. doi: 10.1021/acs.jpcc.7b00019
  • Wang X, Hou Y, Qu J, et al. Up-conversion photoluminescence properties and energy transfer process of Ho3+,Yb3+ Co-doped BaY2F8 fine fibers. J Lumin. 2019;212:154–159. doi: 10.1016/j.jlumin.2019.03.055
  • Bhiri NM, Dammak M, Aguiló M, et al. Stokes and anti-Stokes operating conditions dependent luminescence thermometric performance of Er3+-doped and Er3+, Yb3+ co-doped GdVO4 microparticles in the non-saturation regime. J Alloy Compd. 2020;814 :152197. doi: 10.1016/j.jallcom.2019.152197
  • Yin X, Wang H, Jiang T, et al. Up-conversion luminescence properties and thermal effects of LaVO4 :Er3+ under 1550 nm excitation. Mater Res Bull. 2017;86:228–233. doi: 10.1016/j.materresbull.2016.10.020
  • Gavrilović TV, Jovanović DJ, Smits K, et al. Multicolor upconversion luminescence of GdVO4 :Ln3+ /Yb3+ (Ln3+ = Ho3+, Er3+, Tm3+, Ho3+ /Er3+ /Tm3+) nanorods. Dyes Pigments. 2016;126 :1–7. doi: 10.1016/j.dyepig.2015.11.005
  • Bertini C, Toncelli A, Tonelli M, et al. Optical spectroscopy and laser parameters of GdVO4:Er3+. J Lumin. 2004;106:235–242. doi: 10.1016/j.jlumin.2003.10.005
  • Fan W, Bu Y, Song X, et al. Selective synthesis and luminescent properties of monazite- and zircon-type LaVO4:Ln (Ln) Eu, Sm, and Dy) nanocrystals. Gryst Growth Des. 2007;7:2361–2366. doi: 10.1021/cg060807o
  • Arppe R, Hyppanen I, Perala N, et al. Quenching of the upconversion luminescence of NaYF4: Yb3+, Er3+ and NaYF4: Yb3+, Tm3+ nanophosphors by water: the role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale. 2015;7 :11746–11757. doi: 10.1039/C5NR02100F
  • Gu H, Wang J, Wang Z, et al. Preparation of novel mesoporous GdVO4: Eu3+ crystals by CTAB-SDS micellar-assisted hydrothermal method in wide pH range. Opt Mater. 2019;96:109254. doi: 10.1016/j.optmat.2019.109254
  • Fan W, Song X, Sun S, et al. Microemulsion-mediated hydrothermal synthesis and characterization of zircon-type LaVO4 nanowires. J Solid State Chem. 2007;180:284–290. doi: 10.1016/j.jssc.2006.10.019
  • Oshikiri M, Ye J, Boero M. Inhomogeneous RVO4 Photocatalyst Systems (R = Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). J Phys Chem C. 2014;118:8331–8341. doi: 10.1021/jp410565e
  • Gavrilovic TV, Jovanovic DJ, Lojpur V, et al. Multifunctional Eu3+- and Er3+ /Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method. Sci Rep. 2014;4:4209. doi: 10.1038/srep04209
  • Qin L, Wei D-L, Huang Y, et al. Ortho-vanadates K3RE(VO4)2 (RE = La, Pr, Eu, Gd, Dy, Y) for near UV-converted phosphors. Mater Chem Phys. 2014;147:1195–1203. doi: 10.1016/j.matchemphys.2014.07.006
  • He Y, Cai J, Li T, et al. Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation. Chem Eng J. 2013;215-216:721–730. doi: 10.1016/j.cej.2012.11.074
  • Li P, Zhao X, Jia CJ, et al. Mechanism of morphology transformation of tetragonal phase LaVO4 nanocrystals controlled by surface chemistry: experimental and theoretical insights. Gryst Growth Des. 2012;12:5042–5050. doi: 10.1021/cg3009927
  • Wang Q, Zhang Z, Zheng Y, et al. Multiple irradiation triggered the formation of luminescent LaVO4: Ln3+ nanorods and in cellulose gels. CrystEngComm. 2012;14:4786. doi: 10.1039/c2ce25231g
  • Xin H, Lin LX, Wu JH, et al. Hydrothermal synthesis and multi-color photoluminescence of GdVO4: Ln3+ (Ln = Sm, Dy, Er) sub-micrometer phosphors. J Mater Sci Mater Electron. 2011;22:1330–1334. doi: 10.1007/s10854-011-0308-y
  • He F, Yang P, Wang D, et al. Hydrothermal synthesis, dimension evolution and luminescence properties of tetragonal LaVO4:Ln (Ln = Eu3+, Dy3+, Sm3+) nanocrystals. Dalton Trans. 2011;40:11023–11030. doi: 10.1039/c1dt11157d
  • Chumha N, Kittiwachana S, Thongtem T, et al. Synthesis and characterization of GdVO4 nanostructures by a tartaric acid-assisted sol–gel method. Ceram Int. 2014;40:16337–16342. doi: 10.1016/j.ceramint.2014.07.072
  • Tymiński A, Grzyb T. Enhancement of the up-conversion luminescence in LaVO4 nanomaterials by doping with M2+, M4+ (M2+ = Sr2+, Ba2+, Mg2+; M4+ = Sn4+) ions. J Alloy Compd. 2019;782 :69–80. doi: 10.1016/j.jallcom.2018.12.112
  • Chen P, Jiang L, Yang S, et al. Effects of combustion agents on the synthesis of perovskite erbium ferrite (ErFeO3) nanocrystalline powders fabricated by auto-propagating combustion process. Inorg Chem Commun. 2019;101:164–171. doi: 10.1016/j.inoche.2019.01.028
  • Li G, Wang Z, Yu M, et al. Fabrication and optical properties of core–shell structured spherical SiO2@GdVO4:Eu3+ phosphors via sol–gel process. J Solid State Chem. 2006;179:2698–2706. doi: 10.1016/j.jssc.2006.05.019
  • He X, Zhang L, Chen G, et al. Crystal growth and spectral properties of Sm:GdVO4. J Alloy Compd. 2009;467:366–369. doi: 10.1016/j.jallcom.2007.11.132
  • Zeng L, Liu Y, Lin B, et al. Rational design of Bi3+/Ln3+: GdVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphor: synthesis, characterization and color-tunable property. Opt Mater. 2018;77:204–210. doi: 10.1016/j.optmat.2018.01.040
  • Studenikin PA, Zagumennyi AI, Yu DZ, et al. GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions. Quantum Electron. 1995;25:1162–1165. doi: 10.1070/QE1995v025n12ABEH000556
  • Oka Y, Yao T, Yamamoto N. Hydrothermal synthesis of lanthanum vanadates: synthesis and crystal structures of zircon-type LaVO4 and a new compound LaV3O9. J Solid State Chem. 2000;152:486–491. doi: 10.1006/jssc.2000.8717
  • Mahapatra S, Ramanan A. Hydrothermal synthesis and structural study of lanthanide orthovanadates, LnVO4 (Ln = Sm, Gd, Dy and Ho). J Alloy Compd. 2005;395 :149–153. doi: 10.1016/j.jallcom.2004.10.073
  • Herrera G, Chavira E, Jiménez-Mier J, et al. Structural and morphology comparison between m-LaVO4 and LaVO3 compounds prepared by sol–gel acrylamide polymerization and solid state reaction. J Alloy Compd. 2009;479:511–519. doi: 10.1016/j.jallcom.2008.12.146
  • Bashir J, Khan MN. X-ray powder diffraction analysis of crystal structure of lanthanum orthovanadate. Mater Lett. 2006;60:470–473. doi: 10.1016/j.matlet.2005.09.016
  • Li X, Yu M, Hou Z, et al. One-dimensional GdVO4: Ln3+ (Ln = Eu, Dy, Sm) nanofibers: Electrospinning preparation and luminescence properties. J Solid State Chem. 2011;184:141–148. doi: 10.1016/j.jssc.2010.11.019
  • Tang S, Huang M, Wang J, et al. Hydrothermal synthesis and luminescence properties of GdVO4: Ln3+ (Ln = Eu, Sm, Dy) phosphors. J Alloy Compd. 2012;513:474–480. doi: 10.1016/j.jallcom.2011.10.093
  • Shanta Singh N, Ningthoujam RS, Phaomei G, et al. Re-dispersion and film formation of GdVO4: Ln3+ (Ln3+=Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies. Dalton Trans. 2012;41 :4404–4412. doi: 10.1039/c2dt12190e
  • Mahalingam V, Naccache R, Vetrone F, et al. Enhancing upconverted white light in Tm3+/Yb3+/Ho3+-doped GdVO4 nanocrystals via incorporation of Li+ ions. Opt Express. 2012;20:111–117. doi: 10.1364/OE.20.000111
  • Yu M. Luminescence properties of RP1−xVxO4: A (R = Y, Gd, La; A = Sm3+, Er3+ x=0, 0.5, 1) thin films prepared by Pechini sol–gel process. Thin Solid Films. 2003;444:245–253. doi: 10.1016/S0040-6090(03)01130-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.