339
Views
1
CrossRef citations to date
0
Altmetric
Articles

Room-temperature 1550-nm lasing from tensile strain N-doped Ge quantum dots on Si

, , , , , , , , , , , , & show all
Pages 1120-1127 | Received 19 Apr 2020, Accepted 10 Aug 2020, Published online: 26 Aug 2020

References

  • Atabaki AH, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature. 2018;556:349–354. doi: 10.1038/s41586-018-0028-z
  • Liu JF, Sun XC, Pan D. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt Express. 2007;15:11272–11277. doi: 10.1364/OE.15.011272
  • Zhang F, Crespi VH, Zhang P. Prediction that uniaxial tension along ⟨111⟩ produces a direct band gap in germanium. Phys Rev Lett. 2009;102:156401.
  • Aldaghri O, Ikonic Z, Kelsall RW. Optimum strain configurations for carrier injection in near infrared Ge lasers. J Appl Phys. 2012;111:053106. doi: 10.1063/1.3691790
  • Fischetti MV, Laux SE. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J Appl Phys. 1996;80:2234–2252. doi: 10.1063/1.363052
  • Vogl P, Rieger MM, Majewski JA, et al. How to convert group-IV semiconductors into light emitters. Phys Scr. 1993;T49B:476. doi: 10.1088/0031-8949/1993/T49B/017
  • Niquet YM, Rideau D, Tavernier C, et al. Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: application to silicon, germanium, and their alloys. Phys Rev B. 2009;79:245201. doi: 10.1103/PhysRevB.79.245201
  • Matthews JW, Blakeslee AE. Defects in epitaxial multilayers. I. Misfit dislocations. J Cryst Growth. 1974;27:118–125.
  • Matthews JW, Blakeslee AE. Defects in epitaxial multilayers. J Cryst Growth. 1975;29:273–280. doi: 10.1016/0022-0248(75)90171-2
  • Matthews JW, Blakeslee AE. Defects in epitaxial multilayers. J Cryst Growth. 1976;32:265–273. doi: 10.1016/0022-0248(76)90041-5
  • Matthews JW. Defects associated with the accommodation of misfit between crystals. J Vac Sci Technol. 1975;12:126–133. doi: 10.1116/1.568741
  • Menendeza J, Kouvetakis J. Type-I Ge/Ge1−x−ySixSny strained-layer heterostructures with a direct Ge bandgap. Appl Phys Lett. 2004;85:1175. doi: 10.1063/1.1784032
  • Chang SW, Chuang SL. Theory of optical gain of Ge–SixGeySn1−x−y quantum-well lasers. IEEE J Quantum Electron. 2007;113:249. doi: 10.1109/JQE.2006.890401
  • Gupta S, Magyari-Kope B, Nishi Y. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J Appl Phys. 2013;113:073707.
  • Sun XC, Liu JF, Kimerling LC, et al. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl Phys Lett. 2009;95:01191.
  • Grange T, Stark D, Scalari G, et al. Room temperature operation of n-type Ge/SiGe terahertz quantum cascade lasers predicted by non-equilibrium Green's functions. Appl Phys Lett. 2019;114:11102. doi: 10.1063/1.5082172
  • Sunamura H, Usami N, Shiraki Y, et al. Island formation during growth of Ge on Si(100): a study using photoluminescence spectroscopy. Appl Phys Lett. 1995;66:3024. doi: 10.1063/1.114265
  • Chen Q, Song Y, Wang K, et al. A new route toward light emission from Ge: tensile-strained quantum dots. Nanoscale. 2015;7:8725–8730. doi: 10.1039/C4NR06821A
  • Sawano K, Nakama T, Mizutain K, et al. Light emission enhancement from Ge quantum dots with phosphorous δ-doped neighboring confinement structures. J Cryst Growth. 2017;477:131–134. doi: 10.1016/j.jcrysgro.2017.03.008
  • Martyna G, Florian H, Heiko G, et al. Lasing from glassy Ge quantum dots in crystalline Si. ACS Photonics. 2016;3:298–303. doi: 10.1021/acsphotonics.5b00671
  • Zhang NN, Wang SG, Chen PZ, et al. An array of SiGe nanodisks with Ge quantum dots on bulk Si substrates demonstrating a unique light–matter interaction associated with dual coupling. Nanoscale. 2019;11:15487. doi: 10.1039/C9NR00798A
  • Li Z, Dzurko K, Delage A, et al. A self-consistent two-dimensional model of quantum-well semiconductor lasers: optimization of a GRIN-SCH SQW laser structure. IEEE J Quantum Electron. 1992;28:792–803. doi: 10.1109/3.135248
  • Yan R, Corzine S, Coldren L, et al. Corrections to the expression for gain in GaAs. IEEE J Quantum Electron. 1990;26:213–216. doi: 10.1109/3.44950
  • Shockley W, Read WT. Statistics of the recombinations of holes and electrons. Phys Rev. 1952;87:835. doi: 10.1103/PhysRev.87.835
  • Hall RN. Electron-hole recombination in germanium. Phys Rev. 1952;87:387. doi: 10.1103/PhysRev.87.387
  • Dziewior J, Schmid W. Auger coefficients for highly doped and highly excited silicon. Appl Phys Lett. 1977;31:346. doi: 10.1063/1.89694
  • Joyce WB, Dixon RW. Analytic approximations for the Fermi energy of an ideal Fermi gas. Appl Phys Lett. 1977;31:354–356. doi: 10.1063/1.89697
  • Patrin A, Tarsik M. Optical-absorption spectrum of silicon containing internal elastic stresses. J Appl Spectrosc. 1988;65:598–603. doi: 10.1007/BF02675654
  • Rajkanan K, Singh R, Shewchun J. Absorption coefficient of silicon for solar cell calculations. Sol St Electron. 1979;22:793–795. doi: 10.1016/0038-1101(79)90128-X
  • Shur MS. Handbook series on semiconductor parameters. Vol. 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb. 1st ed. Singapore (SG): World Scientific Publishing Co. Pte. Ltd; 1996.
  • Fan WJ. Tensile-strain and doping enhanced direct bandgap optical transition of n+ doped ge/GeSi quantum wells. J Appl Phys. 2013;114:183106.
  • Kasper E. Properties of strained and relaxed silicon germanium. 1st ed. London (LON): INSPEC; 1995.
  • Van de Walle CG. Band lineups and deformation potentials in the model-solid theory. Phys Rev B. 1989;39:1871. doi: 10.1103/PhysRevB.39.1871
  • Liu JF, Michel J, Giziewicz W, et al. High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform. Appl Phys Lett. 2005;87:103501.
  • Lin GY, Chen NL, Zhang L, et al. Room temperature electroluminescence from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells on a Ge virtual substrate. Materials. 2016;9:803. doi: 10.3390/ma9100803
  • Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica. 1967;34:149–154. doi: 10.1016/0031-8914(67)90062-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.