1,143
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Toward an ultrafast double-pulse stretcher–compressor

ORCID Icon, & ORCID Icon
Pages 1469-1478 | Received 14 Aug 2020, Accepted 04 Dec 2020, Published online: 31 Dec 2020

References

  • Monroe C, Kim J. Scaling the ion trap quantum processor. Science. 2013;339:1164–1169.
  • Guo J, Feng X, Yang P, et al. High-performance Raman quantum memory with optimal control in room temperature atoms. Nat Commun. 2019;10:1–6.
  • Nuernberger P, Wolpert D, Weiss H, et al. Femtosecond quantum control of molecular bond formation. Proc Natl Acad Sci [Internet]. 2010;107:10366–10370. Available from: http://www.pnas.org/content/107/23/10366.abstract.
  • Keefer D, De Vivie-Riedle R. Pathways to new applications for quantum control. Acc Chem Res. 2018;51:2279–2286.
  • Amitay Z, Levin L, Reich DM, et al. Quantum control in ultrafast coherent bond making. Quantum Information and Measurement (QIM) V: Quantum Technologies [Internet]. Rome: Optical Society of America; 2019. p. F5A.85. Available from: http://www.osapublishing.org/abstract.cfm?URI=QIM-2019-F5A.85.
  • Puri P, Mills M, Simbotin I, et al. Reaction blockading in a reaction between an excited atom and a charged molecule at low collision energy. Nat Chem [Internet]. 2019;11:615–621.
  • Butts DL, Kotru K, Kinast JM, et al. Efficient broadband Raman pulses for large-area atom interferometry. J Opt Soc Am B. 2013;30:922.
  • Kotru K, Butts DL, Kinast JM, et al. Large-area atom interferometry with frequency-swept Raman adiabatic passage. Phys Rev Lett. 2015;115:1–5.
  • Saywell J, Carey M, Belal M, et al. Optimal control of Raman pulse sequences for atom interferometry. J Phys B At Mol Opt Phys [Internet]. 2020;53:85006. DOI:10.1088/1361-6455/ab6df6.
  • Vitanov N V, Halfmann T, Shore BW, et al. Laser-induced population transfer by adiabatic passage techniques. Annu Rev Phys Chem. 2001;52:763–809.
  • Bergmann K, Vitanov NV, Shore BW. Perspective: Stimulated Raman adiabatic passage: The status after 25 years. J Chem Phys [Internet]. 2015;142:1–20.
  • Vitanov NV, Rangelov AA, Shore BW, et al. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev Mod Phys. 2017;89:1–66.
  • Chelkowski S, Gibson G. Adiabatic climbing of vibrational ladders using Raman transitions with a chirped pump laser. Phys Rev A. 1995;52:R3417–R3420.
  • Chelkowski S, Bandrauk AD. Raman chirped adiabatic passage: A new method for selective excitation of high vibrational states. J Raman Spectrosc. 1997;28:459–466.
  • Davis JC, Warren WS. Selective excitation of high vibrational states using Raman chirped adiabatic passage. J Chem Phys. 1999;110:4229–4237.
  • Engin S, Sisourat N, Selles P, et al. Probing IR-Raman vibrationally excited molecules with X-ray spectroscopy. Chem Phys Lett [Internet]. 2012;535:192–195. DOI:10.1016/j.cplett.2012.03.062.
  • Engin S, Sisourat N, Selles P, et al. Theoretical study of Raman chirped adiabatic passage by X-ray absorption spectroscopy: highly excited electronic states and rotational effects. J Chem Phys [Internet]. 2014;140:234303(1-10).
  • Xia JF, Sanderson JH, Liu WK, et al. Experimental observation of Raman chirped adiabatic rapid passage. J Phys B At Mol Opt Phys. 2003;36:L409–L414.
  • Fork RL, Martinez OE, Gordon JP. Negative dispersion using pairs of prisms. Opt Lett. 1984;9:150–152.
  • Akturk S, Gu X, Kimmel M, et al. Extremely simple single-prism ultrashort-pulse compressor. Optics Express. 2006;14:10101–10108.
  • Treacy EB. Optical pulse compression with diffraction gratings. IEEE J Quantum Electron. 1969;5:454–458.
  • Caracciolo E, Kemnitzer M, Rumpel M, et al. Single-grating-mirror intracavity stretcher design for chirped pulse regenerative amplification. Opt Lett. 2015;40:1532–1535.
  • Brito Cruz CH, Becker PC, Fork RL, et al. Phase correction of femtosecond optical pulses using a combination of prisms and gratings. Opt Lett. 1988;13:123–125.
  • Kane S, Squier J. Grism-pair stretcher–compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification. J Opt Soc Am B. 1997;14:661.
  • Chauhan V, Bowlan P, Cohen J, et al. Single-diffraction-grating and grism pulse compressors. J Opt Soc Am B [Internet. 2010;27:619. Available from: https://www.osapublishing.org/abstract.cfm?URI=josab-27-4-6190.
  • Walmsley L, Waxer L, Dorrer C. The role of dispersion in ultrafast optics. Rev Sci Instrum. 2001;72:1–29.
  • Steinmeyer G. Femtosecond dispersion compensation with multilayer coatings: toward the optical octave. Appl Opt. 2006;45:1484–1490.
  • Monmayrant A, Weber S, Chatel B. A newcomer’s guide to ultrashort pulse shaping and characterization. J Phys B At Mol Opt Phys. 2010;43:103001(1-34).
  • Weiner AM. Ultrafast optical pulse shaping: a tutorial review. Opt Commun. 2011;284:3669–3692.
  • Backus S, Durfee CG, Murnane MM, et al. High power ultrafast lasers. Rev Sci Instrum. 1998;69:1207–1223.
  • Wollenhaupt M, Assion A, Baumert T. Femtosecond laser pulses: linear properties, manipulation, generation and measurement. In: Träger F, editor. Springer handbook of lasers and optics [Internet]. New York (NY): Springer New York; 2007. p. 937–983. Available from: https://doi.org/10.1007/978-0-387-30420-5_12.
  • Tien AC, Backus S, Kapteyn H, et al. Short-pulse laser damage in transparent materials as a function of pulse duration. Phys Rev Lett. 1999;82:3883–3886.
  • Carbajo Garcia S, Bauchert K. Power handling for LCoS spatial light modulators. Proc. of SPIE. 2018;10518:105181R(1-9).
  • Martinez OE. Design of high-power ultrashort pulse amplifiers by Expansion and Recompression. IEEE J Quantum Electron. 1987;23:1385–1387.
  • Martinez OE. 3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region. IEEE J Quantum Electron. 1987;23:59–64.
  • Lai M, Lai ST, Swinger C. Single-grating laser pulse stretcher and compressor. Appl Opt. 1993;33:6985.
  • Rudd JV, Korn G, Kane S, et al. Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:A1203 regenerative amplifier. Opt Commun. 1993;18:2044–2046.
  • Lemoff BE, Barty CPJ. Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses. Opt Lett. 1993;18:1651.
  • Zhou J, Huang C-P, Shi C, et al. Generation of 21-fs millijoule-energy pulses by use of Ti:sapphire. Opt Lett. 1994;19:126.
  • Du D, Bogusch C, Cotton CT, et al. Terawatt Ti:sapphire laser with a spherical reflective-optic pulse expander. Opt Lett. 1995;20:2114.
  • Banks PS, Perry MD, Yanovsky V, et al. Novel all-reflective stretcher for chirped-pulse amplification of ultrashort pulses. IEEE J Quantum Electron. 2000;36:268–274.
  • Trebino R, Delong KW, Fittinghoff DN, et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency- resolved optical gating. Rev Sci Instrum. 1997;68:3277–3295.
  • Trebino R. Improvisation in FROG. frequency-resolved optical gating: the measurement of ultrashort laser pulses [Internet]. Boston (MA): Springer US; 2000. p. 219–228. Available from: https://doi.org/10.1007/978-1-4615-1181-6_11.