302
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effects of underwater optical turbulence on light carrying orbital angular momentum and its classification using machine learning

, &
Pages 1041-1053 | Received 19 Apr 2021, Accepted 08 Aug 2021, Published online: 31 Aug 2021

References

  • Kaushal H, Kaddoum G. Underwater optical wireless communication. IEEE Access. 2016;4:1518–1547.
  • Zeng Z, Fu S, Zhang H, et al. A survey of underwater optical wireless communications. IEEE Commun Surv Tutor. 2017;19(1):204–238.
  • Doster T, Watnik AT. Measuring multiplexed OAM modes with convolutional neural networks. Appl Laser Sens Free Space Commun. 2016. paper LTh3B-2.
  • Chen R, Zhou H, Moretti M, et al. Orbital angular momentum waves: generation, detection and emerging applications. IEEE Commun Surv Tutor. 2020;22(2):840–868.
  • Y. Ren, L. Li, Z. Zhao, G. Xie, Z. Wang, N. Ahmed, Y. Yan, Y. Cao, A. J. Willner, C. Liu, N. Ashrai, S. Ashrafi, M. Tur, and A. E. Willner, “4 Gbit/s Underwater Optical Transmission Using OAM Multiplexing and Directly Modulated Green Laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest, paper SW1F.4 (2016).
  • Gbur G, Tyson RK. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc Am A. 2008;25:225–230.
  • Korotkova O, Farwell N, Shchepakina E. Light scintillation in oceanic turbulence. Waves Random Complex Media. 2012;22(2):260–266.
  • Yi X, Li Z, Liu Z. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence. Appl Opt. 2015;54(6):1273–1278.
  • Lavery MPJ, Robertson DJ, Sponselli A, et al. Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states. New J Phys. 2013;15. paper 013024.
  • Neary PK, Watnik AT, Judd KP, et al. Machine learning-based signal degradation models for attenuated underwater optical communication OAM beams. Opt Commun. 2020. paper 126058.
  • Avramov-Zamurovic S, Watnik AT, Lindle JR, et al. Machine learning-aided classification of beams carrying orbital angular momentum propagated in highly turbid water. J Opt Soc Am A. 2020;37(10):1662–1672.
  • Lohani S, Knutson EM, O’Donnell M, et al. On the use of deep neural networks in optical communications. Appl Opt. 2018;57(15):4180–4190.
  • Doster T, Watnik AT. Machine learning approach to OAM beam demultiplexing via convolutional neural networks. Appl Opt. 2017;56(12):3386–3396.
  • Trichili A, Issaid CB, Ooi BS, et al. A CNN-based structured light communication scheme for Internet of underwater Things applications. IEEE Internet Things J. 2020;7(10):10038–10047.
  • Cui X-Z, Yin X-L, Chang H, et al. Analysis of an adaptive orbital angular momentum shift keying decoder based on machine learning under oceanic turbulence channels. Opt Commun. 2018;429:138–143.
  • Avramov-Zamurovic S, Nelson C, Esposito JM. Classification of beams carrying orbital angular momentum propagating through underwater turbulence. Proceedings of SPIE Remote Sensing. 2020: 11532.
  • Avramov-Zamurovic S, Nelson C, M J. Esposito, “classification of beams with orbital angular momentum propagating through weak atmospheric turbulence”. OSA Optical Sensors and Sensing Congress. 2020.
  • Avramov-Zamurovic S, Watnik AT, Lindle JR, et al. Designing laser beams carrying OAM for a high-performance underwater communication system. J Opt Soc Am A. 2020;37(5):876–887.
  • Wang Z, Guo Z. Adaptive demodulation technique for efficiently detecting orbital angular momentum (OAM) modes based on the improved convolutional neural network. IEEE Access. 2019;7:163633–163643.
  • Wang Z, Dedo MI, Guo K, et al. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network.. 2019;11(3).
  • Neary PL, Watnik AT, Judd KP, et al. CNN classification architecture study for turbulent free-space and attenuated underwater optical OAM communications. Appl Sci. 2020;10(24):8782–8778.
  • Cheng M, Guo L, Li J, et al. Propagation of an optical vortex carried by a partially coherent Laguerre–Gaussian beam in turbulent ocean. Appl Opt. 2016;55:4642–4648.
  • Wang X, Yang Z, Zhao S. Influence of oceanic turbulence on propagation of Airy vortex beam carrying orbital angular momentum. Optik (Stuttg). 2019;176:49–55.
  • Anguita JA, Neifeld MA, Vasic BV. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Appl Opt. 2008;47:2414–2429.
  • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.
  • Gbur G. Singular optics. CRC Press; 2016.
  • Shires GL. Rayleigh number (thermopedia.com), A-to-Z guide to thermodynamics. Heat Mass Transf Fluid Eng.
  • Bashkatov AN, Genina EA. (2003). “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV. doi: https://doi.org/10.1117/12.518857.
  • Nootz G, Matt S, Kanaev A, et al. Experimental and numerical study of underwater beam propagation in a Rayleigh–Bénard turbulence tank. Appl Opt. 2017;56(22):6065–6072.
  • LeCun Y. “MNIST dataset,” http://yann.lecun.com/exdb/mnist/ (accessed October 1, 2020).
  • Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. 2010: 249–256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.